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Overview

I Limitations on LPs (feasibility, boundedness)
I LP feasible region visualization
I The objective hyperplane
I Convexity of shapes, proof that feasible region of LP is convex
I Number of solutions an LP can have



Limitations on LPs

Not all LPs are solvable.

Example:

max x1 + x2

s.t. x1 − x2 ≤ −3
− x1 + x2 ≤ 1
x1, x2 ≥ 0

This type of LP is called infeasible.



Boundedness

Some LPs aren’t possible to solve because the answer would be ∞
or −∞, meaning there is no max or there is no min objective value
(and therefore there is no optimum)

max x
s.t. x ≥ 1

x ≥ 0

This type of LP is called unbounded.



Feasibility and boundedness

Boundedness is not typically a problem you encounter

I You may see it pop up if you model a problem incorrectly
I Typically an easily fixable mistake, likely a flipped sign

Feasibility is a more common issue

I Difficult to know which constraint is making a problem
infeasible

I May need to enable/disable constraints in order to check which
one is making the problem infeasible

I . . . but sometimes that can cause a problem to become
unbounded



Geometric understanding of LP and objective function

Feasible region is easy enough to reason about in 2 dimensions

I In higher dimensions, not as easy, but can kind of have an idea

Objective function can be easy to reason about as well:

max x1 + x2

s.t. x1 + 2x2 ≤ 5
2x1 + x2 ≤ 5
x1, x2 ≥ 0



Objective function intuition

Objective function is a hyperplane of a lower dimension that we
“push through” the feasible region

The last point that the objective plane touches before it exits the
feasible region is the optimal solution to the LP

Previous example: problem had dimension 2, objective “plane” had
dimension 1 (it was a 1-dimensional line)

Can be demonstrated for 3D with tools like GILP:

https://gilp.henryrobbins.com/en/latest/examples/3d/



Convexity

The feasible region of an LP is always convex.

Definition: A convex set of points in space is one for which the
points on any straight line between any two points are all contained
in the set.



Convexity examples (lenses)



Convexity examples (functions)



Convexity examples (shapes)

This is the one that’s most applicable to our understanding of LP
feasible regions.



Why is an LP’s feasible region convex?

Proof sketch:

1. An LP is composed of a bunch of linear inequalities
2. Each linear inequality divides Rn into two half-spaces, each of

which is convex
3. The intersection of convex sets is convex
4. QED



Convexity and problem difficulty

Why is convexity important?
It makes solving LPs easy:
I Local min ⇐⇒ global min
I No getting stuck in suboptimal spots
I Makes logic for solving LPs simpler (can find an optimal

solution in polynomial time) - no heuristics or error bounds
needed

What still ends up being “difficult”
I Finding a point inside the feasible region to start from
I Writing the solvers themselves



LP solution counts

Question: An LP can have:

I A. One solution
I B. Two solutions
I C. Infinitely many solutions
I D. No solutions

Which of these is false?



LP solution counts (cont.)

Question: An LP can have:

I A. One solution
I B. Two solutions ← incorrect
I C. Infinitely many solutions
I D. No solutions

An LP cannot have only two solutions.

If there is more than one solution, there must be infinitely many
solutions, because the solutions must all lie on the same line.



LP solution count (example)

max x1 + x2

s.t. x1 + 2x2 ≤ 5
2x1 + x2 ≤ 5
x1 + x2 ≤ 3
x1, x2 ≥ 0

There are infinite solutions along the red line, between the
red/green and red/blue intersection points


