
Linear algebra review

Ben Rosenberg

November 30, 2025

Linear algebra topics

I Vectors
I Adding, multiplying
I Dot product
I Linear independence
I What Rn is

I Matrices
I Multiplication, inverse, transpose
I Row reduction

Vectors

Row vector:
[1, 2, 3]

Column vector: 12
3



Adding and multiplying vectors

Adding vectors:

[1, 2, 3] + [4, 5, 6] = [5, 7, 9]

Scalar multiplication:

3 · [1, 2, 3] = [3, 6, 9]

Dot product

Dot product requires a row vector and a column vector:

[1, 2, 3] ·

45
6

 = (1 · 4) + (2 · 5) + (3 · 6) = 4 + 10 + 18 = 32

Linear independence
A set of n vectors are linearly independent if it’s not possible to use
any combination of n − 1 (or fewer) vectors to get the remaining
one as a result.

Linearly independent:

{[1, 0, 0], [0, 1, 0]}

Linearly dependent (the first two are scalar multiples of each other):

{[2, 4, 6], [4, 8, 12], [1, 2, 5]}

Also linearly dependent (not as obvious):

{[1, 2, 3], [3, 5, 6], [2, 2, 0]}

Above, 4 · [1, 2, 3]− 2 · [3, 5, 6] = [2, 2, 0].

Vector spaces

The set of real numbers is denoted by R. This includes everything
like π, e, 1, 432857239.3958593, −32789.4, etc.

The only vector space we care about is Rn.

A vector is in Rn if it has n entries and each entry is in R.

Matrices

A matrix is an ordered list of vectors.

A =

1 2 3
4 5 6
7 8 9


Whether the vectors that comprise a matrix are row vectors (e.g.,
[1, 2, 3]) or column vectors (e.g., [1, 4, 7]) doesn’t really matter.

We can extract elements of a matrix using both the row and column
index, like this:

A1,1 = 1,A2,3 = 6,A3,2 = 8

Matrix dimensions

A matrix could have different numbers of rows and columns:

A =
[
1 2 3
4 5 6

]

Above, A is a 2× 3 matrix. When indexing and when describing
dimensions, rows always come before columns.

A matrix with dimensions n ×m is in Rm×n, so A ∈ R2×3.

Matrix multiplication

Let A be a matrix with dimension m× n and let B be a matrix with
dimension p × q.

AB =⇒ (m × n) · (p × q) =⇒ n and p need to match

BA =⇒ (p × q) · (m × n) =⇒ q and m need to match

The resulting matrix will have dimension m × q.

Matrix multiplication example

The entries of the resulting matrix AB will be the result of taking
the dot product of rows from A and columns from B:

[
1 2 3
4 5 6

]
·

 7 8
9 10
11 12

 =
[
[1, 2, 3] · [7, 9, 11] [1, 2, 3] · [8, 10, 12]
[4, 5, 6] · [7, 9, 11] [4, 5, 6] · [8, 10, 12]

]

=
[
58 64
139 154

]

Identity matrix

The identity matrix In is the n-dimensional matrix that has ones on
the diagonal and zeros everywhere else.

I3 =

1 0 0
0 1 0
0 0 1



Transpose

The transpose of a matrix is what you get when you “flip” the
matrix over the diagonal. This means you swap the rows and
columns.

We denote the transpose of a matrix A by A>.

A =

1 2 3
4 5 6
7 8 9


A> =

1 4 7
2 5 8
3 6 9



Solving a matrix-vector equation

We will frequently see the following equation, where A is a matrix
and b is a vector:

Ax = b

Here, the goal is to find what x must be to satisfy this equation.

The dimensions of x and b must match, and both must have length
equal to n, where A is an n × n matrix.

Row reduction
If we are given A and b as follows:

A =

1 2 3
5 4 3
2 5 9

 , b =

67
8


We first augment A with b like so:

[A | b] =

1 2 3 6
5 4 3 7
2 5 9 8


We can then row-reduce [A | b] to get the following:

rref([A | b]) =

1 0 0 −19/2
0 1 0 39/2
0 0 1 −47/6



Row reduction in practice

import numpy as np
from scipy import linalg

A = np.array([[1, 2, 3], [5, 4, 3], [2, 5, 9]])
b = np.array([6, 7, 8])

x = linalg.solve(A, b)
print(x)

[-9.5 19.5 -7.83333333]

Inverting a matrix
To find the inverse of a matrix, augment it with the identity matrix
In and row-reduce it.

For example, let’s row-reduce the matrix we had from before:

A =

1 2 3
5 4 3
2 5 9


First, augment it with I3 to get [A | I3]:

[A | I3] =

1 2 3 1 0 0
5 4 3 0 1 0
2 5 9 0 0 1


Now, we can row-reduce [A | I3]:

rref


1 2 3 1 0 0
5 4 3 0 1 0
2 5 9 0 0 1


 =

1 0 0 −7/2 1/2 1
0 1 0 13/2 −1/2 −2
0 0 1 −17/6 1/6 1



Matrix inversion in practice

import numpy as np
from scipy import linalg

A = np.array([[1, 2, 3], [5, 4, 3], [2, 5, 9]])

A_inv = linalg.inv(A)
print(A_inv)

[[-3.5 0.5 1.]
[6.5 -0.5 -2.]
[-2.83333333 0.16666667 1.]]

