Unit 8

Learn something new

1.

In Program 6 of Unit 4, we collected functions for working with playing cards into a
module called cards.py. Here’s part of what this module might contain. In what
follows, we’ll assume that cards.py includes a shuffledDeck function like this one

that returns a list of 52 strings in random order, each representing one card in a
shuffled deck.

import random

faceValues =[‘'ace’, '2','3','4",'5",'6',
'7','8','9', 10", ‘jack’,
‘queen’, 'king'l

suits = ['clubs’, 'diamonds’, ‘hearts’,
‘spades'’]

def shuffledDeck():
deck =]
for faceValue in faceValues:
for suit in suits:
deck.append(faceValue + ' of ' + suit)
random.shuffle(deck)
return deck

Now consider the following program, which takes a very new approach to choosing a

random card. If possible, check that cards.py contains a correct version of
shuffledDeck and then run this new program before reading any further.

from tkinter import *
import cards

def firstCard():
deck = cards.shuffledDeck()
card['text'] = deck[0]

root = Tk()

card = Label(root)
card.pack()

pick = Button(root)
pick['text'] = 'Pick a card’
pick['command'] = firstCard
pick.pack()

mainloop()

There’s a great deal that’s new in this program, but what’s most striking is what
happens when it runs. Instead of using the IDLE shell window, this program has its
own window and, inside, a button to click to control it. We say that it has a
graphical user interface (GUI, say gooey), just like most familiar commercial
programs.

To construct a GUI in Python, we typically use the tkinter module. We could write

import tkinter

as usual, but then we would have to prefix all calls to functions in the module with
tkinter, like this:

tkinter.Tk()
tkinter.Label()
tkinter.Button()

Since we’re going to be using many such functions, this would get to be tedious.
Instead, we write

from tkinter import *

This makes all names from the module—including function names—available
directly, no prefix necessary.

Our GUI programs will always start with a call to the Tk function. This creates the
main window for the running program. We’ll assign a name to this
window—normally root—so that we can refer to it. Then we’ll create widgets and
add them to the main window. A widget is one element of a GUI: a button that can
be clicked to make something happen, a box in which the user can enter text, an
image, a menu, etc.

In our example, there are two widgets. The first is a label that we call card. A label
is just a rectangular area where one line of information can be displayed. The label
called card is where the name of a chosen card will be shown. Note that when we
create the label, by calling tkinter’s function Label, we pass in root. Every widget
will be part of some existing element of the interface. In this case, passing root to
Label specifies that the new label will be part of the main window.

Another point to note carefully is that creating a widget does not, immediately, add it
to the GUI under construction. To do that, we call its pack method. Soon we’ll see
how we can specify how pack decides where and how to place the widget, so that we

2

can control the layout of our GUI. For now, though, the key point is that a widget
must be both created and packed before it will be visible.

The second widget is a button called pick. The first of the four lines at the bottom of
the program creates the button. The last packs it.

The middle two lines associate values with properties of the button, just as if it were a
dictionary and the properties were keys. The text property of a button is what is
displayed on it—in this case ‘Pick a card’. Naturally, we label buttons with text that
indicates what will happen when they’re clicked.

The command property of a button specifies a function to be called when the button is
clicked. In our case, clicking the button will cause a call to the firstCard function.
Note carefully that we did not write

pick['‘command’] = firstCard()

This would set the command property to the result of calling firstCard, that is to
something like the string '2 of spades’. Note also that the value of the command
property must be a function that does not take arguments. We’ll discuss later how to
work around this rule.

When the user does click the button in our program, firstCard creates a shuffled deck
and sets the text property of card to the string representing the first card in the deck.

The text property of a label is what’s displayed in it, so this causes the chosen card to
appear in the window. Here’s how the running program looks:

= label czlled card
button called pick

een of diamonds

Pick a card |

After finishing the work of displaying a window with a button in it, our card program
is not done. In fact, it is just beginning its useful existence. The window remains on
the screen responding to user clicks until the user chooses to close it. But then what
instructions is the program following in order to control the window’s behavior?

The answer is that in a GUI program based on tkinter we normally include a call at
the end to the mainloop function, which takes over control after the other instructions

3

we have written are carried out. The mainloop function starts an event loop. After
all the widgets are in place, what we want is for our program to wait for something
relevant to happen. The event loop looks conceptually like this:

while
if

That is, check over and over if something happened and, if so, respond appropriately.

Even in the case of our simple program, there are many relevant events. The obvious
one is if the user clicks the pick button. But our program also responds correctly if
the user minimizes the associated window or resizes it or closes it. Each of these is
an event. We specified what the program should do in the case of a button click. All
of the other event responses are provided by default—subject to change if the defaults
don’t satisfy us.

By the way IDLE is itself a GUI program. Up till now, we’ve always run our
programs from within IDLE. But now that isn’t necessary. To run the pick-a-card
program directly, just find the program file on your computer and double-click it.'

As a second GUI example, we’re going to write a trading game. The player starts
with $10,000 in cash and watches as the price of a certain stock goes up and down.

At any time, the player may click on a ‘Buy’ button to purchase 10 shares of the stock
at the current price or click on a ‘Sell’ button to sell 10 shares purchased earlier. By
waiting to buy until the price is low and then waiting for prices to rise before selling,
the player hopes to make money.

We’ll be dividing the window into two halves, one containing information about the
player’s status and another containing the price and the ‘Buy’ and ‘Sell’ buttons.
Each half will consist of a frame widget, which is simply a rectangle into which other
widgets may be placed. Frames help us with layout and organization.

Let’s start with just the status frame and see how we can control the way it’s packed.
Here’s code to create the frame and to place a label inside it.

from tkinter import *

root = Tk()

' On Windows, it’s also a good idea to change the extension from .py to .pyw. Then the program runs
without opening a shell window in addition to the GUI. Note that double-clicking the program won’t work
unless Python is installed. That is, you can’t give the file as is to a friend and have him or her run it on a
different machine, unless that machine already has Python on it. For this you need a frozen binary. For
Windows, see py2exe.org. Note, however, that as of July 2009, this is not yet available for Python 3.

4

root['bg']l = 'light yellow'

status = Frame(root)
status['bg'] = 'light green’

ID1 = Label(status)
ID1['text'] = 'Status frame'
ID1I'bg’] = ‘light blue’
ID1.pack()

status.packi()

mainloop()

Note that we write ID1 = Label(status) rather than ID1 = Label(root). We’re placing the
label inside the frame. Also, we’ve set the background color of the window, frame
and label using the bg property. This is a temporary measure just to help make it
clear which is which when the program is run.

Here’s the result. The window is shown on the left as it first appears and on the right
as it looks after we drag the corner to make it a little larger.

=10 x|

Skatus Frame

Skatus frame

We can’t see the green of the frame in either picture, because the blue label entirely
fills it. Also, the picture on the right illustrates the fact that widgets are placed by
default at the fop of the parent—the object of which it is a part. The frame filled by
the blue label is at the top of its parent, the main window.

Another point illustrated by the right-hand picture is that, by default, the space
allocated to a widget does not change when its parent is resized. On the right, the
main window is larger, but the frame and label still get the same space they did when
it was small. We can change this, by modifying the last line of our code as follows:

status.pack(expand=YES)

This says that the status frame should be allocated as much space as possible. In our
case—since there are no other widgets in the main window yet—the status frame gets
all the space. The result is a little surprising though.

v -ioix]

Skatus frame

Status Frame

When the window is enlarged, the status frame is allocated all the space in the main
window—that is, the space is sef aside for its use. But the frame itself is no larger
than before, so it ends up using only a small part of the space that’s now available.
By default, a widget goes in the center of the space allocated to it. What we’re seeing
is like a small car parked in the middle of large garage. The garage may be
exclusively for the use of that particular car, but the car doesn’t fill it.

If we want the status frame to fill the allocated space, we use the fill keyword
argument. One possibility is to give it the value Y, as follows:

status.pack(expand=YES, fill=Y)

This says that the status frame should stretch vertically to fill the allocated space.
Here’s the result.

B =10l x|

Skakus Frame

Status Frame

The entire window is available for the use of the green status frame. On the right, the
frame has expanded vertically as far as its space permits. The blue label has not
changed in size, since it is packed with default values. Also, we can now see for the
first time that the label is packed, by default, at the top of the frame.

In addition to the value Y for vertical stretching, the fill keyword argument can be set
to X for horizontal stretching or, most commonly, to BOTH so that it will stretch
vertically and horizontally, filling all allocated space.

Let’s arrange for the status frame to stretch in both directions and also add our second
frame, along with a label to identify it. Recall that this second frame will contain the
stock price and the action buttons ‘Buy’ and ‘Sell’. We’ll call it the action frame.
Here’s our modified code:

from tkinter import *

root = Tk()
root['bg’]l = 'light yellow’

status = Frame(root)
status['bg'] = ‘light green’

ID1 = Label(status)
ID1['text'] = ‘Status frame’
ID1['bg’] = ‘light blue’
ID1.pack()

action = Frame(root)
action['bg’] = 'pink’

ID2 = Label(action)
ID2['text'] = 'Action frame'
ID2['bg’] = 'light blue’
ID2.pack()

status.pack(expand=YES, fill=BOTH)
action.pack()

mainloop()

And here’s the result, after the window is enlarged:

? These names and others in capital letters are imported from tkinter. For example, the tkinter module
includes the following line of code: X = 'x". Since we’ve imported all names from the module, we can
write X instead of tkinter.X.

o _inix]

Skatus frame

Ackion Frame

Notice that the space allocated to the status frame expands as far as possible, leaving
the action frame only the bare minimum necessary, and also that the status frame
stretches to actually fill all the space it owns.

Another crucial keyword argument to pack is side, which allows us to control the
placement of a widget. The default value is TOP, but we can also use LEFT, RIGHT or
BOTTOM. Let’s put the status frame at the left, by modifying the code as follows:

status.pack(side=LEFT, expand=YES, fill=BOTH)

Here’s the result:

s ~1Of x|

Status Frame Action Frame

Note carefully that the action frame is placed at the top, by default, but not at the top
of the whole window. Instead, the status frame is packed first, at the left and then the
status frame is packed at the top of the remaining space.

If we simply reverse the order of the packing statements, like this

action.pack()
status.pack(side=LEFT, expand=YES, fill=BOTH)

we get a very different result:

i =
Ackion Frame

Skatus frame

In this case, the action frame is packed first, at the top of the main window, and the
status frame is packed at the left of what remains. Of course, since the status frame is
set to expand its domain and fill it as far as possible, it reaches from the left side
where it is packed all the way across to the right.

At this point, we’re ready to take control of the layout of our trading game. We’ll
place the status frame on the left and the action frame on the right, letting both
expand as far as possible. Since they’re competing for space, each will get about half.
We’ll add labels in the status frame that will soon be used to display the number of
shares the player owns, the amount of cash he or she has and the total value of the
cash and stock combined. In the action frame we’ll add a label to display the current
stock price and the ‘Buy’ and ‘Sell’ buttons.

Here’s the code.

from tkinter import *

root = Tk()
root['bg’]l = ‘light yellow’

status = Frame(root)
status['bg'] = 'light green’

shares = Label(status)
shares['text'] = 'Number of shares’
shares.pack()

cash = Label(status)
cash['text'] = 'Cash on hand’
cash.pack()

worth = Label(status)
worth['text'] = 'Total worth’
worth.pack()

action = Frame(root)
action['bg'] = 'pink’

price = Label(action)
price['text'] = 'Price of stock’
price.pack()

sell = Button(action)
sell['text'] = 'sell’
sell.pack()

buy = Button(action)

buy['text'] = 'buy’
buy.pack()

status.pack(side=LEFT, expand=YES, fill=BOTH)
action.pack(side=RIGHT, expand=YES, fill=BOTH)

mainloop()

And here’s the result:

T =k
Mumber of shares Price af skock
Zash on hand sell
Total worth by

We can set off the label for the total worth and the action buttons by moving them to
the bottom. Also, let’s allow the buttons expand horizontally so that they end up with
the same width, the full width of the action frame. Here’s the modified code

from tkinter import *

root = Tk()
root['bg'] = 'light yellow'

status = Frame(root)
status['bg'] = 'light green’

shares = Label(status)
shares['text'] = 'Number of shares’
shares.pack()

10

cash = Label(status)
cash['text'] = '‘Cash on hand'
cash.pack()

worth = Label(status)
worth['text'] = 'Total worth’
worth.pack(side=BOTTOM)

action = Frame(root)
action['bg'] = 'pink’

price = Label(action)
price['text'] = 'Price of stock’
price.pack()

sell = Button(action)
selll'text'] = 'sell’
sell.pack(side=BOTTOM, fill=X)

buy = Button(action)

buy['text'] = 'buy’
buy.pack(side=BOTTOM, fill=X)

status.pack(side=LEFT, expand=YES, fill=BOTH)
action.pack(side=RIGHT, expand=YES, fill=BOTH)

mainloop()

And here’s the result.

T W=
Murber of shares Price af stack,
Zash on hand
by
Tokal warth sell

Finally, notice that each label is centered within its allocated space. We can change
this—for any widget, not just a label—by changing the default value of the anchor
keyword in the call to pack. Other than the default, CENTER, the options correspond
to the eight points on a compass: N, NE, NW, W, E, SW, S and SE. We’ll move the

11

labels in the status frame to the west (left) side and the price label to the east (right).
Here’s the code. Note that we’ve removed the coloring, since its only purpose was to
help us understand the layout.

from tkinter import *
root = Tk()
status = Frame(root)

shares = Label(status)
shares['text'] = 'Number of shares’
shares.pack(anchor=W)

cash = Label(status)
cash['text'] = 'Cash on hand’
cash.pack(anchor=W)

worth = Label(status)
worth['text'] = ‘'Total worth'
worth.pack(side=BOTTOM, anchor=W)

action = Frame(root)

price = Label(action)
price['text’] = 'Price of stock’
price.pack(anchor=E)

sell = Button(action)
sell['text'] = 'sell’
sell.pack(side=BOTTOM, fill=X)

buy = Button(action)

buy['text'] = 'buy’
buy.pack(side=BOTTOM, fill=X)

status.pack(side=LEFT, expand=YES, fill=BOTH)
action.pack(side=RIGHT, expand=YES, fill=BOTH)

mainloopl()

And here’s the result, our final layout:

12

T =
Murnber of shares Price of stock,
Cash on hand

by

Tokal worth sel

5. Now that the program is visually correct, let’s make it act as it’s supposed to. First,
we’ll add names for all the values we need to keep track of and a function called
update that displays each value, neatly formatted, in the appropriate label.

from tkinter import *

numberShares = 0
account = 10000
sharePrice = 97

def update():
shares['text'] = 'You own {0} shares'.format(numberShares)
cash['text'] = 'Cash balance: ${0:.0f}'.format(account)
totalWorth = account + numberShares*sharePrice
worth['text'] = ‘Total worth: ${0:.0f }'.format(totalWorth)
pricel'text'] = '${@:.2f}/share'.format(sharePrice)

root = Tk()

status = Frame(root)

status.pack(side=LEFT, expand=YES, fill=BOTH)
action.pack(side=RIGHT, expand=YES, fill=BOTH)
updatel()

mainloop()

Here’s the result:

13

i (=T
You own O shares $97.00/share
ash balance: $10000

by

Total warth: $10000 sell

Next, we add functions that buy and sell 10 shares of stock and associate these with
the command properties of the ‘Buy’ and ‘Sell” buttons.

from tkinter import *

numberShares = 0
account = 10000
sharePrice = 97

def update():
shares['text'] = 'You own {0} shares'.format(numberShares)
cash['text'] = 'Cash balance: ${0:.0f}'.format(account)
totalWorth = account + numberShares*sharePrice
worth['text'] = 'Total worth: ${0:.0f}".format(totalWorth)
price['text'] = '${0:.2f}/share'.format(sharePrice)

def doBuy/():
global account, numberShares
if account >= 10*sharePrice:
numberShares += 10
account -= 10*sharePrice
updatel()

def doSell():
global account, numberShares
if numberShares >= 10:
numberShares -= 10
account += 10*sharePrice
updatel()

root = Tk()

status = Frame(root)

sell = Button(action)
sell['text’] = 'sell’
selll'command’] = doSell
sell.pack(side=BOTTOM, fill=X)

14

buy = Button(action)
buy['text'] = 'buy’
buy['‘command’] = doBuy
buy.pack(side=BOTTOM, fill=X)

status.pack(side=LEFT, expand=YES, fill=BOTH)
action.pack(side=RIGHT, expand=YES, fill=BOTH)

mainloop()

In the doBuy function, we check to make sure the player has enough cash on hand to
buy ten shares at the current price before proceeding with the transaction. This way,
if the ‘Buy’ button is clicked when the player doesn’t have enough money to make
the purchase, nothing will happen. Likewise, in doSell, we check to make sure the
player actually owns at least 10 shares before allowing the desired sale to
proceed—you can’t sell if you don’t have any shares.

After either a purchase or sale, we call the update function, so that the display will
reflect the latest information. Both of the new functions also include a global

statement. This is necessary, but we’ll postpone discussion of why till a little later.

Here’s how the program looks after we’ve clicked ‘Buy’ three times.

o _ioix
You own 30 shares $97.00/share
Cash balance: $7090

by

Total worth: $10000 sell

Of course, since the price hasn’t changed, the 30 shares purchased for $97 each are
still worth $97. The player has $7,090 cash in hand, plus 30 shares worth $97 each,
for a total worth of $10,000. Owning shares can’t affect the player’s worth until the
price begins to change.

We’d like to have the price change on a regular basis, say every two seconds. The

tkinter module includes a function called after that can be used for this kind of
scheduling. We can call it as a method of either the main window, like this

root.after(2000, fn)

or of any widget, like this

15

cash.after(2000, fn)

In either case, the effect is to cause the function named as the second argument to be
called after a delay measured in milliseconds and specified by the first argument. In
our example, fn will be called once after 2 seconds.’

To get an unending series of calls to a function, we use a standard trick. The last line
of code in the called function schedules the next call to the same function. Here’s
how the code might look:

def fn():

root.after(2000, fn)

Now if we call fn once directly, a new call will automatically be scheduled for two
seconds later. When this second call finishes, it will schedule a third call. Since this
process never ends, we’ll get a steady stream of calls, once every two seconds.

Here’s the final code for our game:

import random
from tkinter import *

numberShares = 0
account = 10000
sharePrice = 97

def update():
shares['text'] = 'You own {0} shares'.format(numberShares)
cash['text'] = 'Cash balance: ${0:.0f}'.format(account)
totalWorth = account + numberShares*sharePrice
worth['text'] = 'Total worth: ${0:.0f}".format(totalWorth)
price['text'] = '${0:.2f}/share'.format(sharePrice)

def doBuy():
global account, numberShares
if account >= 10*sharePrice:
numberShares += 10
account -= 10*sharePrice
update()

def doSell():
global account, numberShares
if numberShares >= 10:
numberShares -= 10
account += 10*sharePrice

3 A millisecond is 1/1000" of a second. So 1000 milliseconds is one second, 5,000 milliseconds is five
seconds, 500 milliseconds is half a second and so on.

16

updatel()

def changePrice():
global sharePrice
sharePrice += random.random()*4 - 2
updatel()
root.after(2000, changePrice)

root = Tk()
status = Frame(root)

shares = Label(status)
shares.pack(anchor=W)

cash = Label(status)
cash.pack(anchor=W)

worth = Label(status)
worth.pack(side=BOTTOM, anchor=W)

action = Frame(root)

price = Label(action)
price.pack(anchor=E)

sell = Button(action)
selll'text'] = 'sell’
selll'’command'] = doSell
sell.pack(side=BOTTOM, fill=X)

buy = Button(action)
buy['text'] = 'buy’
buy['‘command’] = doBuy
buy.pack(side=BOTTOM, fill=X)

status.pack(side=LEFT, expand=YES, fill=BOTH)
action.pack(side=RIGHT, expand=YES, fill=BOTH)

changePricel()

mainloop()

A few small items are worth pointing out:

e® The changePrice function includes a call to update so that the display will
change immediately to reflect the new price.

e We’ve eliminated code setting initial text values for the labels, since the call
to changePrice will immediately replace them.

17

® changePrice function calls the function random from the random module, that
is random.random. To get access to the function, we import the module.

We also need to take a moment to see just sow the stock price is being changed. The
random function returns a random number between 0 and 1. If we multiply the result
by 4, we get a result from 0 to 4. If we then subtract 2, we get a result from -2 to 2.
Adding this to sharePrice thus makes it go up or down randomly by up to two dollars.

By the way, you might wonder who is responsible for making sure that scheduled
calls to changePrice are actually carried out? It’s the event loop. Scheduled calls are

another example of events that occur and to which our program responds.

7. In many of our program so far, we liberally reuse names. Here’s an example:

def nextYear(year):
year +=1
print("***', year, "***)

def decade(start):
for year in range(start, start+10):
nextYear(year)

year = 1832
nextYear(year)
print()
decade(1492)
print()
print(year)

Here we’ve used the name year in the main part of the program to refer to the integer
1832. If you run the program, you’ll see that year still has this meaning in the last
line—it displays 1832. Of course this is no surprise, but how can we account for the
fact that this is true even though year is reassigned to refer to the integer 1833 in the
call to nextYear and that it is assigned to ten other integers in the call to decade?

The answer is that this program actually uses three completely separate names. One
is the name year used in the main program to refer to 1832. Another is the name
year used only within the nextYear function. It takes on a value whenever a call is
made to nextYear and, within the function, it is reassigned to the next higher number.
The third name is also year and it exists only within the decade function. Within that
function, it is assigned to a series of integers by the for statement.

Several people may share the name John or Emily, although they have nothing else to
do with one another. Certainly if one John or Emily has a birthday, the others are

18

unaffected. Likewise, what we do with names that are local to a function—defined
within it—has no effect on an identical name in another function. It also has no effect
on a global name—one defined outside any function.

Occasionally, however, we do want a function to make a change in a global name. In
this case, we must identify the name as global using a global statement. Here’s an
example:

def nextYear(year):
year +=1
print(***', year, "***)

def makeltBeNextYear():
global year
year +=1

year = 1832

nextYear(year)
print(year)

makeltBeNextYear()
print(year)

After the call to nextYear, the name year in the main program still refers to 1832,
despite the reassignment within the function. After the call to makeltBeNextYear,
however, the name year in the main program refers to 1833. The simple rule is: If'a
global name is to be reassigned within a function it must be identified as global.

This explains why we needed to use global statements in our trading game. The
doBuy, doSell and changePrice functions all reassign global names.

Note that it is not necessary to identify a name as global if it will be used, but not
reassigned. For example, the update function in our game uses many global names,
without reassigning any:

def update():
shares['text'] = 'You own {0} shares'.format(hnumberShares)
cash['text'] = 'Cash balance: ${0:.0f }'.format(account)
totalWorth = account + numberShares*sharePrice
worth['text'] = 'Total worth: ${0:.0f}".format(totalWorth)
price['text'] = '${0:.2f}/share'.format(sharePrice)

The global names account, numberShares and sharePrice are clearly not reassigned
within this function. But what about the global name shares and the others used to

19

refer to widgets? These aren’t reassigned either. The name shares starts out referring
to a certain label widget and it ends up referring to the same widget. Only a property
of the widget has been changed.

20

