
Unit 6

Learn something new

1. Since Unit 2, we’ve been opening file objects and reading lines of text from them. Here’s the

code pattern we’ve normally used:

Another way of achieving, exactly, the same effect is this:

This approach is a bit more awkward, but it is useful to understand for a reason that will soon
be clear.

The new approach doesn’t take advantage of the with statement. Using with, we open a file
object, give it a name and, in addition, arrange for it to be closed when we’re done. That is,
the connection between the file object—book in this case—and the actual file—pap.txt
—is broken when the with statement is completed.

Here, instead, we explicitly break the connection by calling the file method close.
The new approach also differs in how it gets information from the file. Rather than reading
lines one by one, just in time for each to be processed, we use the file method readlines
to get a complete list of all lines once and for all. Then we close the file and work with the
list.

The new approach doesn’t have much to recommend it when we’re working with ordinary
files. But it does very nicely lay the foundation for reading files that—instead of residing on
our computer—are available on the Internet. As an example, here’s code to read an online file
that contains the full text of Mark Twain’s Huckleberry Finn:

with open('pap.txt') as book:
 for line in book:
 to process one line of the book

filename = 'pap.txt'
book = open(filename)
lines = book.readlines()
book.close()

for line in lines:
 to process one line of the book

import urllib.request

url = 'https://www.gutenberg.org/files/76/76-0.txt'
book = urllib.request.urlopen(url)
lines = book.readlines()
book.close()

for line in lines:

In place of open, we’ve used the urlopen function from the urllib.request module.
And in place of the file name pap.txt, we’ve used the URL, or web address, of the file we
want.1 Otherwise, everything stays the same. This means we can use files on the web almost
as easily as local ones.

There are a few technical details to take care of though. Let’s look at a sample line from the
list returned by readlines. Here’s code to print the line with index 461.

And here’s the output.

The first thing to notice is the letter b just before the first quote. This indicates that the line is
not a string object, but rather a bytes object. When we download information from the web, it
may well be an image or sound rather than text. A bytes object is designed to hold raw binary
data—the 1’s and 0’s used to represent all kinds of digital information—so it’s appropriate in
this context. In our case, though, we know the binary information is, in fact, text. To convert
to a string object, we call the bytes method decode. Here’s the revised code.

Before running this, though, check the last part of the previous output: '...\r\n'. Inside
quotes, the backslash character is used in designating characters that would otherwise be hard
to represent. For example, \n is used for the ‘newline’ character, the one you get by pressing
the Enter key, and \t is used for the character you get by pressing Tab.

The statement

print('hello\n\thello')

1 URL stands for uniform resource locator. It’s a system for specifying where information can be found on the
Internet and what method to use to retrieve it.

import urllib.request

url = 'https://www.gutenberg.org/files/76/76-0.txt'
book = urllib.request.urlopen(url)
lines = book.readlines()
book.close()

print(lines[461])

b'course that was all right, because she done it herself.\r\n'

import urllib.request

url = 'https://www.gutenberg.org/files/76/76-0.txt'
book = urllib.request.urlopen(url)
lines = book.readlines()
book.close()

print(lines[461].decode())

produces the output

hello

hello

Note also that len('\n\t') is 2, not 4, since \n and \t represent one character each.

Apparently, each line of the Huckleberry Finn file ends with two of these special characters.
Before we use a line, we might like to slice these off. We’ll do that in just a moment.

If you look at the original Huckleberry Finn file using a web browser, you’ll see that the first
several lines contain bibliographical information and that the end is a long statement about
legal uses of the file. The actual beginning and end of the novel is marked with lines that start
with '***'. Let’s find those lines.

The first line in the body of the for statement decodes the bytes object into a string and
removes the last two characters. As we go through the lines, we count through the indices so
that we can report them when we find lines flagged with stars.
The output of this program is:

Apparently, the actual novel runs from index 21 up to—but not including—index 11990. If
we want to process only lines in the novel, we can slice out the rest as follows:

import urllib.request

url = 'https://www.gutenberg.org/files/76/76-0.txt'
book = urllib.request.urlopen(url)
lines = book.readlines()
book.close()

index = 0
for line in lines:
 line = line.decode()[:-2]
 if '***' in line:
 print(index, line)
 index += 1

21 *** START OF THE PROJECT GUTENBERG EBOOK ADVENTURES OF HUCKLEBERRY FINN ***
11990 *** END OF THE PROJECT GUTENBERG EBOOK ADVENTURES OF HUCKLEBERRY FINN ***

import urllib.request

url = 'https://www.gutenberg.org/files/76/76-0.txt'
book = urllib.request.urlopen(url)
lines = book.readlines()
book.close()

lines = lines[21:11990]

index = 0
for line in lines:
 line = line.decode()[:-2]

2. If you’ve been running the example programs, you’ve probably noticed that they’re painfully
slow. That’s because each new run starts by reading an entire book from the Internet. This is
silly. Once we’ve read the book once, we shouldn’t need to do it again. In fact, we also
shouldn’t need to decode bytes and strip off extraneous lines and characters each time we
want to do something with this text.

What we’d like is to create a list with just the lines we want, in just the form we want, and
then to save it permanently.

The shelve module provides a general facility for saving and reusing Python objects. We
create a shelve object—or connect to an existing one—using the shelve.open	function.
Then we use it exactly as if it were a dictionary. To save any object, we just make it the value
of some key. The big difference is that ordinary dictionaries disappear when our program
finishes executing. Shelve objects persist between runs—they remain available for use.

As an example, let’s make a persistent list of the lines in Huckleberry Finn so that we can
quickly access the list in any new program.

In the first line, we import the shelve module along with urllib.request. Note that
you can import as many modules as you like in one line—just separate module names with
commas.

The middle of the program builds up the list we want, starting with an empty list and
appending new lines to it one by one. The lines come only from the actual text of the novel
and we decode them and slice off the last two characters before appending them to our final
list. The last three lines of the program create a shelve object called books, save the list
we’ve created as the value of the key 'Huckleberry Finn' and then close the shelve
object.2

2 The last step is not strictly necessary since open connections will be closed automatically when the program is
done. But it is good policy. If we don’t think to include the code for closing now, we’re likely to forget it later if we
extend our program so that it doesn’t stop at this point.

import urllib.request, shelve

url = 'https://www.gutenberg.org/files/76/76-0.txt'
book = urllib.request.urlopen(url)
lines = book.readlines()
book.close()

lines = lines[21:11990]

finalLines = []

for line in lines:
 line = line.decode()[:-2]
 finalLines.append(line)

shelf = shelve.open('books')
shelf['Huckleberry Finn'] = finalLines
shelf.close()

This program takes some time to run. The payoff is that, after we’ve run it once, we’ll never
again need to read and process the webbased file. Here’s a program to list lines in the novel
that contain the string 'cat'. Note how fast it runs.

3. In compiling the list of lines for Huckleberry Finn, we used a common pattern. We started

with an empty list and added new objects to it one by one within a for	statement. In outline,
the pattern looks like this:

Python provides a simpler way to accomplish the same task. We just specify the end result
we want using a list comprehension. Here’s the rewritten code:

Applying this streamlined pattern, we can rewrite the program that compiles lines from
Huckleberry Finn:

Check back and you’ll see that the single highlighted line does the work of five lines in the
original.

import shelve

shelf = shelve.open('books')
book = shelf['Huckleberry Finn']
shelf.close()

for line in book:
 if 'cat' in line:
 print(line)

result = []

for item in target:
 result.append()

result = [for item in target]

import urllib.request, shelve

url = 'https://www.gutenberg.org/files/76/76-0.txt'
book = urllib.request.urlopen(url)
lines = book.readlines()
book.close()

finalLines = [line.decode()[:-2] for line in lines[21:11990]]

shelf = shelve.open('books')
shelf['Huckleberry Finn'] = finalLines
shelf.close()

4. We’ve been working a lot with text. Now let’s analyze some interesting numbers. Each
month the U.S. government publishes the Consumer Price Index (CPI), the price of a
carefully selected “market basket” of consumer goods. When you hear news stories reporting
the inflation rate, they’re just telling you how this price has risen. Assuming government
economists have chosen a group of items for the basket that’s representative of what typical
consumers actually buy, this rise reflects a general increase in the cost of living.

A file containing CPI data from 1913 to 2013 is located at the following URL:

https://futureboy.us/frinkdata/cpiai.txt

If you look at the file, you’ll see that it contains a number of header lines followed by the
actual data in the following format:

The first column gives the year and the next 12 columns give the value of the CPI for each of
the 12 months of the year. There are some additional columns that we won’t be using. Also,
note that the last row (not pictured above) gives data for the current year and therefore will
list the CPI only for months which have already past.

If we’d like to work with this data, our first task is simply to read it and store it in a reusable
permanent object. Our plan is to create a dictionary called cpi with years as keys.
The value associated with any year will be a list starting with the year again—we’ll explain
why in a moment—and then the monthly CPI values for the year. For example,

cpi[1913]

will be 	
	
[1913, 9.8, 9.8, 9.8, 9.8, 9.7, 9.8, 9.9, 9.9, 10.0, 10.0,
10.1, 10.0]

Note that, in this list, the year is in position 0 and the actual CPI values are in positions 1 to
12.
Because of this, 1 corresponds to January, 2 to February and so on, making it easy to access
values in a natural way.
The CPI for March 1942 will be stored in cpi[1942][3]: cpi is the whole dictionary,

• cpi[1942] is the list associated with the key, the integer 1942, and
• cpi[1942][3] is the item in position 3 of that list.

Here’s a program to compile the dictionary and store it permanently in a shelve object:

Most of this code should look familiar. The first five lines read the data file from the Internet
and store it as a list of lines. The last three lines store the dictionary called cpi in a shelve
object.

The middle group of lines compiles the dictionary. This code is a bit tricky. We start the
dictionary empty and go one by one through the lines in the file, adding an entry for each
line, if appropriate. The first step for each line is to convert it from a bytes object to a string
(using decode) and then to split the string into a list of individual items. The result for a
typical line would look like this:

['1914', '10.0', '9.9', '9.9', '9.8', ...]

Before we use this items list to create a dictionary entry, we need to be sure the line we’re
processing isn’t part of the header that precedes the data or one of the blank lines the
separates the data into groups of five years. Our code uses an if statement to create an entry
only if there is at least one item (ruling out the blank lines) and if the first item is a string
consisting entirely of digit characters (ruling out all of the header lines). The condition part of
the if statement uses the string method isdigit, which returns True when called on a
string of digits.3 It also connects two separate conditions into one, using and in a natural way.

Once we’ve determined that we’re working with actual data, we need to use it to produce a
key and the associated value. The main difficulty is that items holds a series of strings; we
want to get the associated numbers. Converting the first element of the list to an integer gives
us our key: int(items[0]). This is the integer 1914 in the sample line above.
Note that using an unconverted string would be clumsy. We would have to write
cpi['1914'] rather than just cpi[1914] and we wouldn’t be able to find get CPI data
for ten years later by writing cpi[1914+10].

3 There are a host of useful string methods, including two we’ve already seen, lower and split. If you’re
wondering where you can find a complete list, check Section 5.6.1 of the Python documentation at:
http://docs.python.org/3.0/library/stdtypes.html. You might also like to look at the list methods (including, e.g.,
sort) given in Section 5.6.4, as well as the file methods (e.g. readlines) given in Section 5.9.

import urllib.request, shelve

url = 'https://futureboy.us/frinkdata/cpiai.txt'
file = urllib.request.urlopen(url)
lines = file.readlines()
file.close()

cpi = {}

for line in lines:
 items = line.decode().split()
 if len(items) > 0 and items[0].isdigit():
 cpi[int(items[0])] = [float(item) for item in items[:13]]

shelf = shelve.open('cpi')
shelf['cpi'] = cpi
shelf.close()

Once we have the key, say 1914, we need to produce the value to associate with it. This is a
list of numbers, e.g. [1914, 10.0, 9.9, ...]. But note that most of these are not
integers—they’re floating point numbers, numbers that may include a decimal part.
The Python function float works just like int, except that it converts strings to floating
point numbers rather than integers. What we want to do, then, is apply float one by one to the
elements of items and collect the results in a new list. We could do this by creating an
empty list and appending new elements to it one at a time, but, as before, a list
comprehension is easier and clearer.

The following code specifies a list of floating point numbers derived from the strings in
items:

[float(item) for item in items]

A slight variation uses at most the first 13 elements in items, so that extra columns that give
percentages and averages are ignored.4

[float(item) for item in items[:13]]

And, finally, the actual code in the program uses the result of this list comprehension as the
value of the key that specifies the year:

cpi[int(items[0])] = [float(item) for item in items[:13]]

5. Once the data has been processed into a convenient form and stored in a persistent object,
using it is quick and easy. Here’s a program that lists years from 1920 to 1990 in which
prices fell between January and February.

This program uses the range function in a new way. If we pass in two integer values instead
of one, range generates values from the first up to, but not including, the last. Otherwise,
the program is simple and straightforward.

4 If there are less than 13 elements, as there likely will be in the current year, the code still works fine. The second
index in a slice just specifies a limit. If there are only seven elements in items, the limit of 13 in items[:13] has
no effect. All seven items are used.

import shelve

shelf = shelve.open('cpi')
cpi = shelf['cpi']
shelf.close()

for year in range(1920, 1991):
 if cpi[year][1] > cpi[year][2]:
 print(year)

