
 1

Unit 5

Learn something new (designed for UNIX and Mac users)

Note: There is no major change in content between the official ‘Learn Something new’
document and this document other than the examples also working for those with Mac computers
and UNIX-based computers.

1. Files on a computer are normally organized into folders. For example, here is a snapshot of
some of the files and folders on a computer running a Mac OS X operating system.

The file tmp.py is in a folder called Development, which is itself located in a folder called
Programs. The main body of the snapshot shows the relationships between folders. For
example, both the Programs and Screencasts folders are in a folder called Units.

At the bottom of this snapshot is a long sequence called the path, a complete specification of
the location of a file on the computer. The path for the four .py files listed on the right-hand
side of the snapshot is represented on your computer as a long string of characters:

/Data/Current/Hunter/133/Units/Programs/Development

That is, the files are in the Development folder which is in the Programs folder, which is in
the Units folder and so on, up through the Data folder which is located on the hard drive,
represented here as the very first forward slash character at the beginning of the path, /.

We can write Python programs that interact with the operating system using the os module.
In the examples that follow, the code we run will always be contained in the tmp.py
program file shown in the snapshot above. Naturally, you will get different results when you
run these examples, since your folders will be organized differently.

 2

The function os.listdir takes a string specifying a path and returns a list of all items
found at that location. The function takes its name from the fact that the technical term for a
folder is a directory. Using a path like the long one given above involves complications we
want to postpone. To make things easier, we’ll start by using a special path—the string '.'
consisting of a single dot or period character. This path is an abbreviation for the current
directory, in our case, the one where our program file tmp.py is located. Here’s a
program:

import os

path = '.'
for filename in os.listdir(path):
 print(filename)

And here’s the output—the four files in the current directory.
cards.py
my.py
pap.txt
tmp.py

Another special path is '..', which refers to the parent directory of the current
directory—the folder in which it’s located. In our case, the current directory, or folder, is
Development. So the parent directory is Programs. The following program lists all the files
in the Programs folder.

import os

path = '..'
for filename in os.listdir(path):
 print(filename)

 3

Here’s the output:
anagrams.py
anagramsAdjustable.py
anagramSolver.py
cards.py
Development
dissociated.py
fileCompressor.py
hail.py
hanoi.py
letterFrequency.py
my.py
my.pyc
nameFrame.py
nameFrame2.py
pap.txt
Program1.py
Program2.py
Program3.py
Program4.py
RecursiveCountdown.py
spiral.py
squareSpiral.py
sudoku.py
summarize.py
TODO.txt
Urlopen.py

As you can see from the .py endings, most of the items in the Programs folder are indeed
program files. Note carefully, however, that the fifth item listed is Development, which is
not a file, but a directory. Naturally, if we look at the parent of Development, one of the
items contained must be Development itself.

2. The output just produced does not make it clear that Development is a directory. Suppose
we’d like to flag directories in the listing with stars like this:
anagrams.py
anagramsAdjustable.py
anagramSolver.py
cards.py
*** Development
dissociated.py
fileCompressor.py
hail.py
.
.
.

 4

The function os.path.isdir takes a string and returns True if the string specifies a
path, that is if it is a directory. We’ll also need a function called os.path.join that
takes any number of pathname elements and joins them together according to the rules of
the operating system. For example,

os.path.join('.', 'tmp.py')

returns

./tmp.py

Note that the strings '.' and 'tmp.py' have been joined using a forward-slash (/)
character. This is correct on a computer running Mac OS X. What happens on a different
computer will depend on the operating system it is running.

Using these two new functions, we can write a listing program that flags directories, giving
the output above.

import os

path = '..'
for filename in os.listdir(path):
 newpath = os.path.join(path, filename)
 if os.path.isdir(newpath):
 print('***', filename)
 else:
 print(filename)

The only tricky point here is the condition for the if statement. Keep in mind that
os.path.isdir must be given a path, not the name of a file. As we get to each file name
in the for statement, we want to check if adding that name to the existing path produces a
new path which is a directory. For example, when filename is Development, we want to
check

/Data/Current/Hunter/133/Units/Programs/Development

Since '..' is an abbreviation for the parent directory

/Data/Current/Hunter/133/Units/Programs/

what we want to check is '../Development '. This is exactly what newpath is
assigned to represent.

 5

3. For a reason that will be clear in a moment, it will be handy to encapsulate the file listing
code we’ve just written in a function. Here’s a revised version of the program.

import os

def lister(path):
 for filename in os.listdir(path):
 newpath = os.path.join(path, filename)
 if os.path.isdir(newpath):
 print('***', filename)
 else:
 print(filename)

lister('.')
print('---')
lister('..')

As you can see, one immediate benefit we get is that the function can be called twice just as
easily as once. The three lines at the bottom produce the following output, which gives the
listing for both the current directory and the parent directory.

cards.py
my.py
pap.txt
tmp.py

anagrams.py
anagramsAdjustable.py
anagramSolver.py
cards.py
*** Development
dissociated.py
fileCompressor.py
hail.py
.
.
.

 6

4. Now here’s a big payoff. When we get to a name like Development which is a directory, it’s
nice to flag it with stars in the listing, but it would be even better to show the files (and any
directories) it contains. Consider the following code and note carefully that only one line in
the function definition is new.

import os

def lister(path):
 for filename in os.listdir(path):
 newpath = os.path.join(path, filename)
 if os.path.isdir(newpath):
 print('***', filename)
 lister(newpath)
 else:
 print(filename)

lister('..')

Here, when we encounter a directory, we display it flagged with stars as before, but we also
call the lister function with the new path just constructed. For example, we display
*** Development and then call lister with '../Development'.
Naturally this produces a listing of the four files in that location.

Here’s the new output. Note that one call—lister('..')—produces a complete,
organized listing of two directories. We say the listing is organized, because files within a
subdirectory like Development are listed just under the directory name—we’ll improve how
the organization is reflected in the listing in just a moment.

anagrams.py
anagramsAdjustable.py
anagramSolver.py
cards.py
*** Development
cards.py
my.py
pap.txt
tmp.py
dissociated.py
fileCompressor.py
hail.py

 7

5. The full power of the lister function takes a little while to sink in. Take a moment to
consider what happens if we call it this way: lister('/'). The function would list out all
items contained at the top level of the directory structure. Some of these would themselves be
folders, so lister would automatically be called again to produce a listing of the items
they contain. But some of these would also be directories, meaning that lister would be
called yet again one level deeper.

Continuing in this way, the single function call, lister('/'), will produce a listing of
every file in every folder on the entire hard drive!

Before we produce anything like this amount of output, let’s improve the way it’s displayed.
If you look back at the previous result, you’ll see that there’s no easy way to tell that only the
first four files listed after *** Development are contained within that folder. We’d much
rather display the contained file names indented, like this:

anagrams.py
anagramsAdjustable.py
anagramSolver.py
cards.py
*** Development
 cards.py
 my.py
 pap.txt
 tmp.py
dissociated.py
fileCompressor.py
hail.py
.
.
.

Let’s pass the lister function a string of spaces to print before each file name. With each
new call one level deeper, we’ll make this string a little longer.

 8

Here’s the revised code.

import os

def lister(path, indent):
 for filename in os.listdir(path):
 newpath = os.path.join(path, filename)
 if os.path.isdir(newpath):
 print(indent, '***', filename)
 lister(newpath, indent+' ')
 else:
 print(indent, filename)

parentOfParent = os.path.join('..', '..')
lister(parentOfParent, '')

The last line here is where the main work begins, with a call to lister. This initial call
passes the function a path and a string to use for indentation. The path is '../..', which
means the parent of the parent of the current directory. In our case, the current directory is
Development, the parent is Programs, and the parent of the parent is Units—check the figure
at the very beginning of this unit to see how these are related.

Our initial call thus passes the function an abbreviation for the path to Units and an empty
string consisting of zero spaces. This results in an un-indented listing of the items in Units
and, along the way, calls to lister for each of the directories contained in Units— that is, for
Programs and Screencasts. In these calls, the indentation string passed to the function
contains four spaces, meaning these subdirectory listings will be indented. The listing for
Programs causes yet another call to lister when Development is found within the folder.

 9

Here’s the output (with dots substituted for some very long parts of the listing to save space):

dir.png
IDLE.png
*** Programs
 anagrams.py
 anagramsAdjustable.py
 anagramSolver.py
 cards.py
 *** Development
 cards.py
 my.py
 pap.txt
 tmp.py
 dissociated.py
 fileCompressor.py
 hail.py
 .
 .
 .
 summarize.py
 TODO.txt
 urlopen.py
 wptrans.py
*** Screencasts
 1.1.swf
 1.2.swf
 1.3.swf
 .
 .
 .
 4.3.swf
 4.4.swf
 4.5.swf
 4.6.swf
Thumbs.db
unit01.doc
unit02.doc
Unit03.doc
Unit04.doc
unit05.BAK
unit05.doc
~$unit05.doc
~WRL0001.tmp

 10

6. Rather than displaying all file names, we might like to pick out a selection. For example,
suppose we’d like to see just Python program files. These are easy to identify because their
file names end in .py. If filename refers to a string like 'cards.py', we can pick out
individual characters using indexing, just as we did with lists in Unit 4. All we need to
remember is that position numbers begin with zero. So, in this example,
filename[0] is 'c', filename[1] is 'a' and so on, through filename[7],
which is 'y'.

The index for the very last character in a string is always one less than the length of the
string. In our example, the string 'cards.py' has 8 characters, but since we count
positions starting with zero, the final y is in position 7—that is, 8–1. That means we can refer
to the last character in filename this way:

filename[len(filename)-1]

We calculate the length of the string (8), subtract 1 (giving 7) and use this as the index.
Luckily, since this is a common task, Python also provides a much easier method.
Negative indices count backward from the right-hand end of the string.
So, the easy way to refer to the last character is filename[-1]. The next-to-last character
is filename[-2] and so on. Just carefully note that in counting backward we start from
one, not zero*.

7. At this point, we could check if a file name refers to a Python program file by checking the
last few characters one by one. But Python also provides a very handy mechanism called
slicing for specifying a group of adjacent indices all at once. If filename refers to the
string 'cards.py', then filename[0:5] has the value 'cards'. And
filename[5:8] has the value '.py'. To specify a slice, we give two indices—a
starting position and an ending position—separated by a colon (:).

The only tricky point is that the slice corresponds to all indices from the first up to one less
than the last. This takes some getting used to, but it is convenient for several reasons. First, if
we subtract the two indices, we get the number of characters in the slice. In our examples,
there are 5-0 or 5 characters in filename[0:5] and 8–5 or 3 in filename[5:8].
Second, two slices that divide a string share an index—5 in our example. Finally, if we want
a slice to go right up to—and including—the last character of a string, the second index is
simply the length of the string, since the index of the last character is one less than the length.

Starting a slice at the beginning of a string or continuing it to the end of a string is so
common that Python provides shortcuts—just leave out either the first or the last index.
The two slices we’ve been using as examples can be written as just filename[:5] and
filename[5:].

* This isn’t as arbitrary as it may seem.
Normal indices tell you how far to go forward from the beginning of the string, so 0 naturally means to go no
distance at all—the first character is located at the very beginning.
Negative indices are combined with the length of the string just as in our example: length minus one is the index of
the last character, length minus two is the index of the next-to-last character and so on.

 11

Finally, note that we’ve been illustrating slices using strings, but everything we’ve said
applies equally to lists. If you want a section of a list, just use a slice that specifies the desired
range of indices.

Now here’s a quick application of slices. We’ll add a line to our previous program so that it
displays only directory names and Python program files.

import os

def lister(path, indent):
 for filename in os.listdir(path):
 newpath = os.path.join(path, filename)
 if os.path.isdir(newpath):
 print(indent, '***', filename)
 lister(newpath, indent+' ')
 else:
 if filename[:3] == '.py':
 print(indent, filename)

parentOfParent = os.path.join('..', '..')
lister(parentOfParent, '')

Here’s the output:
*** Programs
 anagrams.py
 anagramsAdjustable.py
 anagramSolver.py
 cards.py
 *** Development
 cards.py
 my.py
 pap.txt
 tmp.py
 dissociated.py
 fileCompressor.py
 hail.py
 hanoi.py
 letterFrequency.py
 my.py
 nameFrame.py
 nameFrame2.py
 Program1.py
 Program2.py
 Program3.py
 Program4.py
 recursiveCountdown.py
 spiral.py
 squareSpiral.py
 sudoku.py
 summarize.py
 urlopen.py
 wptrans.py
*** Screencasts

Now it’s immediately clear that neither the top-level folder—Units—nor the Screencasts
subfolder contain any program files.

