Unit 5
Apply what you know

0. Study the programs in the Learn something new section until you can write them
yourself from scratch without relying on this document or any other source of
information. Here are the programs:

0.1. Write a program that lists all items in the current directory. Modify the program
so that it lists all items in the parent of the current directory.

0.2. Write a program that lists all items in the parent of the current directory, flagging
directories in the listing with stars.

0.3. Modify the previous program so that the listing code is contained in a function
called lister that takes a path and lists items in the location specified by the path,
flagging directories with stars. Call lister with both the path to the current
directory and the path to its parent.

0.4. Modify lister so that it not only flags directories with stars but also lists their
contents.

0.5. Modify lister again, so that subdirectory listings are indented appropriately.

0.6. Modify lister again so that only directories and Python program files are
included in the listing.

1. Write a program that prints the name Fred 100 times, one time per line. Do not use
for or while. Instead, create a function called printFred that takes in a number and
prints Fred that number of times. The function operates by displaying the name Fred
once and then calling itself with the next smaller number, if that number is at least
one. The call printFred(100) should do what we want.

A function that calls itself is said to be recursive. As this program demonstrates,
recursion can always be used in place of loops.

2. Write a program that lists all files in the current directory that contain the string
‘random’.

3. Write a program that reports the total number of files in the current directory and any
subdirectories, subsubdirectories and so on.

4. Write a program that solves the word-scramble puzzles produced by Program 2 in
Unit 4. The user enters a scrambled string of letters and the program responds by



displaying all words in Pride and Prejudice that can be formed by rearranging these
letters.

For this program, you should create a dictionary that has alphabetized strings of
letters as keys and lists of words that can be formed with those letters as the
associated values. For example, the key "acer—with the letters in alphabetical
order—would have the value ['care’, 'race’]l. These four letters can also be rearranged
to form the word "acre’, but this is not used in Pride and Prejudice.

To put a string of letters into alphabetical order, first use it to create a list. Next, use
the list method sort to put the list in order—if your list is called letters, just write
letters.sort(). Finally, use the rejoin function you wrote for Program 2 in Unit 4 to
convert the list back into a string.

Write a program to find the five most common words in Pride and Prejudice ending
with ‘ing’. Start by creating a dictionary of counts for all words ending in ‘ing’.
Then use the dictionary to create a list like this:

[[5, 'walking'], [17, 'sing’], [2, 'balancing’], ...]

Each element is a two-item list containing a count and a word. Call the list method

sort on this list of lists. The sorting will be done using the first item of the two-item
lists—that is elements will be sorted from lowest counts at the beginning to highest

counts at the end. The last five elements will then be the ones we want. Use a slice
to select them.

To process all the items in a dictionary, use this pattern:
for key in dictionary:

The name key will be assigned the keys used in dictionary, one at a time, though not
in any predictable order.

Write a program to choose a random five-card hand from a standard deck and then
report if it is a one-pair hand (two cards of one face value and the other three all
different face values), a two-pair hand (two cards of one face value, two cards of
another face value and a fifth card of a third face value), a three-of-a-kind hand (three
cards of the same face value and two others of different face values, a full house
(three cards of one face value and two of another) or a four-of-a-kind hand (four cards
of one face value and a fifth of a different face value).

Start by creating a dictionary of counts for the face values. Use this to form a list of
just the counts. Sort the list. The result makes it easy to classify the hand. For
example, if the sorted list of counts is [2, 3], the hand is a full house.



You should, of course, reuse functions compiled in your cards.py module.



