
Ben Rosenberg CSCI 320: Theory of Computation June 10, 2021

Exam 1 Review Sheet
Predicates, Sets, Quantified formulae

Logical operators and their meanings:

operator meaning true when...
𝑝 ∧ 𝑞 𝑝 and 𝑞 both 𝑝 and 𝑞 are true
𝑝 ∨ 𝑞 𝑝 or 𝑞 one of 𝑝 or 𝑞 is true

𝑝 ⟹ 𝑞 𝑝 implies 𝑞 always unless T implies F
𝑝 ⟺ 𝑞 𝑝 iff 𝑞, 𝑝 equals 𝑞 𝑝 and 𝑞 are the same

¬𝑝 not 𝑝 𝑝 is false

Relevant logical operator facts:

• DeMorgan’s Laws: ¬(𝑝∧𝑞) = (¬𝑝)∨(¬𝑞), and ¬(𝑝∨𝑞) =
(¬𝑝) ∧ (¬𝑞)

• (𝑝 ⟺ 𝑞) = (𝑝 ⟹ 𝑞) ∧ (𝑞 ⟹ 𝑝)
• 𝑝 ⟹ 𝑞 = ¬𝑝 ∨ 𝑞

A proposition is either true or false.

A predicate is a function that produces propositions, and
depends on one or more variables over a domain.

Quantifiers and their meanings:

quantifier true when...
(∀𝑥)(𝑃 (𝑥)) 𝑃 (𝑥) is true for all 𝑥 in the domain
(∃𝑥)(𝑃 (𝑥)) 𝑃 (𝑥) is true for some 𝑥 in the domain

Quantifiers bind variables to turn what would originally be
a predicate into a proposition (or a predicate in one fewer
variable).

A set is something that formalizes the notion of items which
result in a predicate returning true. We say that for a set
defined 𝑆 = {𝑥|𝑃𝑆(𝑥)}, the elements in 𝑆 are all 𝑥 for which
𝑃𝑆(𝑥) is true.

Set notation and its meaning:

notation meaning
𝑥 ∈ 𝑆 𝑥 is in set 𝑆
𝑥 ∉ 𝑆 𝑥 is not in set 𝑆
𝑆 ⊆ 𝐴 𝑆 is a subset of 𝐴
𝑆 ⊂ 𝐴 𝑆 is a proper subset of 𝐴
𝐴 ∪ 𝐵 union of 𝐴 and 𝐵
𝐴 ∩ 𝐵 intersection of 𝐴 and 𝐵
𝐴\𝐵 set difference of 𝐴 and 𝐵

𝐴 complement of 𝐴
∅ the empty set
𝐸 the universe set

𝐴 × 𝐵 the set product of 𝐴 and 𝐵
𝒫(𝐴) the power set of 𝐴

Definitions for set notation:

thing what it means
𝐴 subset 𝐵 all elements of 𝐴 are in 𝐵

𝐴 proper subset 𝐵 subset but 𝐴 ≠ 𝐵
𝐴 union 𝐵 all elements that are in 𝐴 and 𝐵

𝐴 intersection 𝐵 elements that are in both 𝐴 and 𝐵
set diff of 𝐴 and 𝐵 elements in 𝐴 that are not in 𝐵

𝐴 complement elements in 𝐸 that are not in 𝐴
empty set ∅ set with no elements in it

universe set 𝐸 set with every element in the domain
product 𝐴 × 𝐵 ordered pairs (𝑥, 𝑦) ∶ 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵
power set 𝒫(𝐴) set of all subsets of 𝐴

The cardinality of a set is its size (number of elements) for
finite sets, and... basically its size (but not quite) for infinite
sets.

The cardinality of the power set of set 𝐴, |𝒫(𝐴)| = 2|𝐴|.

Products, Relations, Functions (injective and
surjective), Induction and Recursion, Alphabets

and Strings

Products: see above (set product/Cartesian product, presum-
ably).

A function 𝑓 ∶ 𝐴 → 𝐵 is a mapping from 𝐴 to 𝐵 that is in
essence a subset of the set product of 𝐴 and 𝐵 (in other words,
𝑓 ⊂ 𝐴 × 𝐵) in that it is a bunch of ordered pairs specifying
which element of 𝐴 goes to which element of 𝐵. For general
functions, we used the analogy of the gradebook as a function
from students to grades.

Important function properties:

• For all elements 𝑎 ∈ 𝐴, there is an element 𝑏 ∈ 𝐵 that
gets mapped to by 𝑓 (in other words, ∀𝑎 ∈ 𝐴∃𝑏 ∈ 𝐵 ∶
𝑓(𝑎) = 𝑏)

• 𝐴 is the domain of 𝑓 and 𝐵 is the target or codomain
of 𝑓

• Every element in the domain has only one image/ele-
ment that it is mapped to – if 𝑎 has two images under
𝑓 , then they must be equal to each other (the image is
unique)

Ways to describe an input to 𝑓 and its output:

• 𝑓 sends 𝑥 to 𝑦
• (𝑥, 𝑦) ∈ 𝑓
• 𝑓(𝑥) = 𝑦
• 𝑓 ∶ 𝑥 ↦ 𝑦

The range of a function is the set of values in its codomain
that it actually maps elements in its domain to.

An injective function (also called one-to-one) is one for which
each element in the range is mapped to by only one element in
the domain. In the line-drawing analogy from class, we might

Queens College 1 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 10, 2021

think of it as prohibiting elements in the codomain from hav-
ing more than one line drawn to them from the domain. We
used the parking lot analogy for this in class.

A surjective function is one for which every output is
mapped to by an input. (Probably not on the exam, as we
didn’t go over them in class.)

The inverse 𝑓−1 of a function 𝑓 essentially switches the or-
dering of the ordered pairs from 𝑓 . It maps from the range
of 𝑓 to the domain of 𝑓 . (Note that it can’t necessarily map
from the codomain to the domain as it’s possible that not
every element of the codomain was used by 𝑓 .) We call 𝑓−1

the partial inverse function.

A partial function is a function 𝑓 ∶ 𝑆 → 𝐴 where 𝑆 ⊆ 𝐴. In
other words, it is a function whose domain is a subset of its
codomain. If some element 𝑥 is in the codomain but not the
domain of 𝑓 , we say that 𝑓(𝑥) is undefined.

A relation is basically a generalized function that doesn’t
have the restriction that one input cannot map to multiple
outputs. (Probably not on the exam, as we didn’t go over
them in class.)

A total function is one for which the domain is the same set
as the codomain.

An alphabet is any finite set, typically denoted (e.g.) Σ =
{a, b, c}.

A letter is an element of an alphabet, e.g. a or b.

A string is any finite sequence of letters. An example from
the above alphabet might be ababba.

The length of a string is the number of letters in the string,
denoted |𝑠| for string 𝑠.

The empty string, denoted 𝜆, is the string without any let-
ters in it. We say that |𝜆| = 0.

The concatenation of strings 𝑥 and 𝑦, denoted 𝑥 ∘ 𝑦 or 𝑥 ⋅ 𝑦,
is 𝑥𝑦 (𝑥 written next to 𝑦). Ex. for 𝑥 = abca, 𝑦 = bac,
𝑥 ∘ 𝑦 = abcabac and |𝑥 ∘ 𝑦| = |𝑥| + |𝑦| = 4 + 3 = 7.

A language is any set of strings (over the given alphabet). A
language is always infinite (consider concatenating 𝑛 letters,
starting from 𝑛 = 0 which gives 𝜆 and continuing. There is
an injection from each of these 𝑛-letter strings to the natural
numbers ℕ).

Induction is one method of proving things, but will not be
explored too much. We won’t ever have to write an inductive
proof for something – it’s enough to just know the reason-
ing behind it. It boils down to a base case and an inductive
hypothesis.

Ex. Consider a ladder with (countably) infinite rungs, and
we want to show that we can climb to any rung. Induction
allows us to say that if we can climb to the first rung (base
case), and if we’re at any rung, we can climb to the next rung

on the ladder (inductive hypothesis), we can climb to any of
the rungs on the ladder.

Anyone reading this should already be familiar with recur-
sion from coding such functions in their previous CS classes,
but it doesn’t really matter anyway because we didn’t explic-
itly go over it in class. Induction uses a kind of recursion
which is probably as much as you need to know for the exam
(if anything).

Cardinalities, the natural numbers ℕ, Countable
and Uncountable sets, Counting ⋃∞

𝑘=1 ℕ𝑘

More precise definition of cardinality: We say that |𝐴| is the
cardinality of a set 𝐴. Given two sets 𝐴 and 𝐵, if |𝐴| ≤ |𝐵|,
there exists some injective function from 𝐴 to 𝐵. With our
parking lot idea, 𝐴 is the set of cars and 𝐵 is the set of park-
ing spots. If |𝐴| = |𝐵|, then there are injections from 𝐴 to 𝐵
and from 𝐵 to 𝐴. If |𝐴| < |𝐵| then there is an injection from
𝐴 to 𝐵 but not from 𝐵 to 𝐴.

A set 𝐴 has infinite cardinality if there is some proper sub-
set 𝑆 ⊂ 𝐴 of 𝐴 with the same cardinality |𝑆| = |𝐴| (there are
injections between the two sets 𝑆 and 𝐴).

The set ℕ = {0, 1, 2, 3, … } of natural numbers is infinite.

A set 𝐴 is finite if its cardinality |𝐴| is strictly less than
ℵ0 = |ℕ|.
A set is countable if its cardinality is not greater than ℵ0.
Otherwise, it is uncountable. In other words, a set is count-
able if it is either finite or has cardinality ℵ0 (is countably
infinite).

The Gödel injection is one of our ”failed attempts to con-
struct an uncountable set.” It essentially allows us to write
any 𝑘-tuple of natural numbers as another natural number in
ℕ. It is defined as 𝒢 ∶ ⋃∞

𝑘=1 ℕ𝑘 → ℕ.

Fancily typeset, this is:

𝒢 ∶ ℕ × ℕ × ⋯ × ℕ⏟⏟⏟⏟⏟⏟⏟
𝑘 times

→ ℕ

The way we achieve this injection is with prime factorization.
Any 𝑘-tuple, written ⟨𝑥1, 𝑥2, … , 𝑥𝑘⟩, gets mapped to a natural
number as follows:

𝒢(⟨𝑥1, 𝑥2, … , 𝑥𝑘⟩) = 𝑝𝑥1+1
1 ⋅ 𝑝𝑥2+1

2 ⋅ ⋯ ⋅ 𝑝𝑥𝑘+1
𝑘 ,

where 𝑝𝑖 represents the 𝑖th prime number.

Examples of computing Gödel numbers:

• [1] → 21+1 = 22 = 4
• [1, 0] → 21+1 ⋅ 30+1 = 12
• [1, 0, 0] → 21+1 ⋅ 30+1 ⋅ 50+1 = 60

Examples of inverse Gödel numbering:

Queens College 2 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 10, 2021

• 𝒢−1(2) = [0] because its prime factorization is 21 which
corresponds to 20+1 and therefore the sequence contain-
ing only one 0

• 𝒢−1(4480) = undefined because its prime factors do
not cover consecutive primes (2, 3, 5, etc.) starting from
2 (without doing all the math it looks like it’s missing
a 3)

• 𝒢−1(720) = [3, 1, 0] because 720’s prime factorization is
24 ⋅ 32 ⋅ 51 which corresponds to 23+1 ⋅ 31+1 ⋅ 50+1 and
therefore [3, 1, 0]

Other questions about Gödel numbering can be in the form
of being given some tuple of variables, and being told various
things about it, and using the properties of the numbering sys-
tem to deduce things about the tuple’s corresponding Gödel
number. Look at the class notes (4.pdf, page 5) for more
examples.

Diagonalization proof that |{𝑓 ∶ ℕ → {0, 1}}| > ℵ0,
Partial Functions

Partial functions: see above, by Functions.

The diagonalization proof that 𝒫(ℕ) is uncountable fol-
lows.

Assume for the sake of contradiction that there is some injec-
tion from the natural numbers ℕ to its power set 𝒫(ℕ). Then,
we can write this injection as a table like so (the actual con-
tents of the below table are irrelevant, they are just sequences
of bits):

0 1 2 3 4 5 6 …
𝑓0 0 0 0 0 0 0 0 …
𝑓1 1 0 0 0 1 0 0 …
𝑓2 0 0 1 0 0 0 0 …
𝑓3 1 1 1 1 1 1 1 …
𝑓4 0 1 0 1 0 1 0 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

Here, each 0 or 1 represents whether the natural number in
the top row is contained or not contained in 𝑓𝑖, each of which
is a subset of ℕ. The table should list all of the infinite subsets
of ℕ in this way. Then, the argument against this construc-
tion proceeds as follows. Take a subset 𝐷 of ℕ, such that
𝑛 ∈ 𝐷 ⟺ 𝑛 ∉ 𝑓𝑛. In other words, 𝐷 is the subset of ℕ
created by flipping each of the elements (from 0 to 1 or 1 to
0) along the diagonal. Then, since 𝐷 is a subset of ℕ, it must
have its own row in the table, which we will call number 𝛼.
So, 𝐷 = 𝑓𝛼.

This, however, leads to a contradiction. If 𝛼 ∈ 𝐷 (the 𝛼th bit
in 𝐷 is a 1), then 𝛼 ∉ 𝑓𝛼 by our definition of 𝐷 as the subset
created by flipping all the bits along the diagonal. But then,
by the definition of 𝛼 as the row to which 𝐷 is assigned (we
said that 𝐷 = 𝑓𝛼), 𝛼 ∉ 𝐷 (the 𝛼th bit in 𝐷 is a 0). This is a
contradiction.

The same occurs when we try to assume 𝛼 ∉ 𝐷. If 𝛼 ∉ 𝐷,
then it must be in 𝑓𝛼 by the definition of 𝐷 (as it was flipped
on the diagonal). But since 𝐷 = 𝑓𝛼 by the definition of 𝛼, 𝛼
must be in 𝐷 and therefore we have the same contradiction.

So, we have proven by contradiction that ℙ(ℕ) is uncountable
and thus that |𝒫(ℕ)| > ℵ0.

□

Exam on Monday. Good luck!

Queens College 3 Professor Bojana Obrenić

