Lecture 6

Ben Rosenberg

June 15, 2021

Context-Free Grammars

Regular expressions contain strings; context-free grammars generate strings.

Definition: A context-free grammar is a structure:

$$G=(\Sigma,V,P,S)$$

We already know Σ , the alphabet. But similarly to regular expressions, we really have two alphabets – one for the letters used in the grammar, and one for the programming keyboard of symbols used to represent a grammar.

We define each of the components as follows:

- Σ : input/output alphabet; alphabet of terminals
- V: alphabet of variables (non-terminals)
 - Note: It is required that V and Σ be disjoint; that is, $V \cap \Sigma = \emptyset$
 - Note also that V can never be empty, as it always must contain S
- S: designated start symbol. $S \in V$
- P: finite set of productions (rules). $P \subseteq V \times (\Sigma \cup V)^*$
 - Note that despite the fact that the right-hand side above is infinite on the level of \aleph_0 , P itself is finite.

Notation: When we have $(A, w) \in P$, this means that $A \in V$ and $w \in (V \cup \Sigma)^*$. Then, we write $A \to w$, pronounced "A to w" or "A derives w" (not A implies w).

Notation: If $A \to w_1, A \to w_2, \dots, A \to w_k$ then we may write $A \to w_1 | w_2 | \dots | w_k$.

Ex.

- $\begin{array}{l} \bullet \ G = (V, \Sigma, P, S) \\ \bullet \ \Sigma = \{ \mathtt{a}, \mathtt{b}, \mathtt{c} \} \\ \bullet \ V = \{ S, A, B, D \} \text{ (capital } C \text{ is omitted because it looks too similar to lowercase c)} \\ \bullet \ P : S \to AB | BD, A \to \mathtt{a}A | \mathtt{c}, B \to B \mathtt{b} | \mathtt{ca}, D \to \mathtt{a}b D | \lambda \end{array}$

Def (informal): Start with a start symbol. Then, replace the start symbol with the RHS of some of its rules (those that have the start symbol on the left side) and replace S with one of the possibilities separated by s on the right. In the above example, either AB or BD can be substituted for S. We then continue doing this.

Definition (continued): We say that a variable $E \in V$ derives a sentence $w \in (\Sigma \cup V)^*$ in one step if $[E \rightarrow w] \in P$ ($E \rightarrow w$ is a rule).

In our G, for instance, B derives ca in one step.

Variable $E \in V$ derives a sentence $x \in (\Sigma \cup V)^*$ in n+1 steps if all of the following hold:

1. w derives $y \in (\Sigma \cup V)^*$ in n steps

2. $y = y_1 F y_2$ where y_1 and y_2 are strings $\in (\Sigma \cup V)^*$ and $F \subset V$ is a variable 3. $[F \to y_0] \in P$ is a rule, and $y_0 \in (\Sigma \cup V)^*$ is a string 4. $y_1 y_0 y_2 = x$

In other words:

$$E \xrightarrow{n+1 \text{ steps}} y \iff E \xrightarrow{n \text{ steps}} y_1 F y_2 = y_1 y_0 y_2$$

The rule here is $F \rightarrow y_0$.

We are done substituting when we are out of variables in the sentence.

Definition: We say that language L(G) is generated by grammar G if it is the set of exactly those terminal $(\in \Sigma)$ strings that are derivable from the start symbol in any number of steps.

Example, using our previous G:

$$S \to AB \to aAB$$

$$A \to \mathbf{c}$$

 $A \rightarrow aA \rightarrow ac$

From the above two, we can see that $A \to a^*c$ by using the rule $A \to aA$ zero or more times, and then applying $A \to c$.

Similarly, $B \to cab^*$, and $D \to ab^*$.

So, we have, for our starting string:

 $S \to AB | BD \to a^* ccab^* \cup cab^* (ab)^*$

Note that grammars can make languages that *do not* have regular expressions, though.

Consider a language $L_2 = \{a^n b^n | n \ge 0\}$. There is no regular expression for this. If we tried to do this with a^*b^* , we would have aab in the regular expression but not in L_2 . So, $L_2 \subset a^*b^*$. We will prove this later in the course.

Let's write a grammar for L_2 :

- $\begin{array}{l} \bullet \ G = (V, \Sigma, P, S) \\ \bullet \ V = \{S\} \\ \bullet \ \Sigma = \{ \mathtt{a}, \mathtt{b} \} \\ \bullet \ P : S \rightarrow \lambda | \mathtt{a} S \mathtt{b} \end{array}$

So, we have (from above) \mathtt{a}^n λ \mathbf{b}^n

Example: Consider $L = \{a^n \operatorname{ccb}^{2n} | n \ge 0\}$. Then we want the left side to have a telescope of a, and the right side to have bb.

Let's write a grammar for L:

- $\begin{array}{l} \bullet \ G = (V, \Sigma, P, S) \\ \bullet \ V = \{S\} \\ \bullet \ \Sigma = \{ \mathtt{a}, \mathtt{b} \} \\ \bullet \ P : S \rightarrow \mathtt{a}S\mathtt{b}\mathtt{b} | \mathtt{c}\mathtt{c} \end{array}$

Theorem: Algorithm (1):

Input: context-free grammars G_1 and G_2

Output: context-free grammar G that generates:

1. $L(G_1) \cup L(G_2)$ 2. $L(G_1) \circ L(G_2)$ 3. $L(G_1)^*$

• $G_1 = (V_1, \Sigma_1, P_1, S_1)$ • $G_2 = (V_2, \Sigma_2, P_2, S_2)$ • $V \cap V = \emptyset$

•
$$V_1 \cap V_2 =$$

We need to construct $G = (V, \Sigma, P, S)$.

- 1. \cup operation
 - 1. $V = V_1 \cup V_2 \cup \{S\}, S \notin V_1 \cup V_2$ 2. S is a new variable 3. $P = P_1 \cup P_2 \cup \underbrace{\{S \rightarrow S_1 | S_2\}}_{\text{new rules}}$
- 2. operation

$$\begin{array}{l} \stackrel{\cdot}{\textbf{1.}} V = V_1 \cup V_2 \cup \{S\}, S \notin V_1 \cup V_2 \\ \textbf{2.} \ P = P_1 \cup P_2 \cup \underbrace{\{S \rightarrow S_1 \circ S_2\}} \\ \end{array}$$

3. * operation

1.
$$V = V_1 \cup V_2 \cup \{S\}, S \notin V_1 \cup V_2$$

2. $P = P_1 \cup P_2 \cup \underbrace{\{S \rightarrow \lambda | SS|S_1\}}_{\text{new rules}}$

1. S can make zero or more copies of itself

new rules

So, the class of context-free languages is **closed** under regular operations. That is, applying regular operations to a context-free language yields itself a context-free language.

Algorithm (2):

Input: regular expression e

Output: equivalent context-free grammar; G such that L(G) = L(e)

Construction:

Recursion on the number of operators in \boldsymbol{e}

Base case: e has zero operators, and $\Sigma = \{ \texttt{a,b,c} \}$

 $\begin{array}{l} \bullet \mbox{ any alphabet letter} \in \Sigma \mbox{ (ex: a):} \\ - G = (V, \Sigma, P, S); V = \{S\}, P : S \rightarrow \mathsf{a} \\ \bullet \lambda \\ - G = (V, \Sigma, P, S); V = \{S\}, P : S \rightarrow \lambda \\ \bullet \ \emptyset \\ - G = (V, \Sigma, P, S); V = \{S\}, P = \emptyset \mbox{ (no rules)} \end{array}$

Recursively: 3 cases for outermost operator in e (applied last)

1. $e = e_1 \cup e_2$ 2. $e = e_1 \circ e_2$ 3. $e = e_1^*$

Then, we apply Algorithm (1).

Example: $e = ab^*(a \cup b) \cup (bc \cup a)^*$.

Let's write a grammar for *e*:

• $G = (V, \Sigma, P, S)$

Queens College

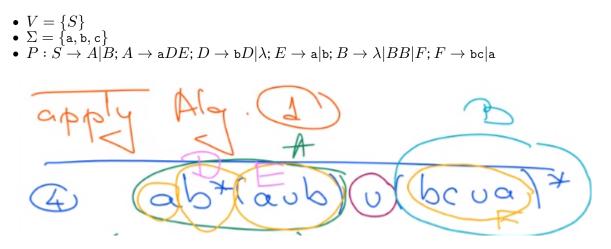


Figure 1: Diagram of regular expression

Example: Set of strings that are matched parentheses

In other words, $\Sigma = \{(,)\}$, and () is good, but) () () or) (or (() are not good.

Let's write a grammar for this set:

• $G = (V, \Sigma, P, S)$ • $V = \{S\}$

•
$$\Sigma = \{(,)\}$$

• $\overline{P}: S \to \lambda|(S)|SS$

Example: Set of palindromes over $\Sigma = \{a, b, c\}$

In other words, strings that are equal to their reversal.

Let's write a grammar for this set:

•
$$G = (V, \Sigma, P, S)$$

• $V = \{S\}$
• $\Sigma = \{a, b, c\}$
• $P : S \rightarrow \lambda |aSa|bSb|cSc|a|b|c$

This is similar to the previous parenthesis matching, but with a's, b's, and c's as their own sets of parentheses (minus nesting).

Example: Set of strings that are *not* palindromes over $\Sigma = \{a, b, c\}$

In other words, strings that are *not* equal to their reversal. Using our previous analogy, we are looking for a *lack* of parentheses.

Let's write a grammar for this set:

We want to start from the outside of a string, and work inwards until we find a pair of letters equidistant from the ends that are not equal (good string) or reach the middle (bad string).

Example:
$$L : a^{3n+1}b^{k+2}g^{j}c^{2k+1}a^{p+2}b^{2p}g^{n+3}$$
, with $n, k, j, p \ge 0$.

This telescopes as follows (matching exponents):

Let's write a grammar for this set:

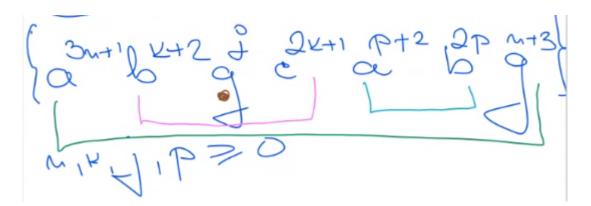


Figure 2: Grouping the telescoping

- $G = (V, \Sigma, P, S)$ $V = \{S, A, B, D\}$ $\Sigma = \{a, b, c, g\}$ $P : S \rightarrow aaaSg|aABggg; A \rightarrow bAcc|bbDc; D \rightarrow Dg|\lambda; B \rightarrow aBbb|aa$