
Lecture 6

Ben Rosenberg

June 15, 2021

Context‐Free Grammars
Regular expressions contain strings; context‐free grammars generate strings.

Definition: A context‐free grammar is a structure:

𝐺 = (Σ, 𝑉 , 𝑃 , 𝑆)

We already know Σ, the alphabet. But similarly to regular expressions, we really have two alphabets – one
for the letters used in the grammar, and one for the programming keyboard of symbols used to represent a
grammar.

We define each of the components as follows:

• Σ: input/output alphabet; alphabet of terminals
• 𝑉 : alphabet of variables (non‐terminals)

– Note: It is required that 𝑉 and Σ be disjoint; that is, 𝑉 ∩ Σ = ∅
– Note also that 𝑉 can never be empty, as it always must contain 𝑆

• 𝑆: designated start symbol. 𝑆 ∈ 𝑉
• 𝑃 : finite set of productions (rules). 𝑃 ⊆ 𝑉 × (Σ ∪ 𝑉)∗

– Note that despite the fact that the right‐hand side above is infinite on the level of ℵ0, 𝑃 itself is
finite.

Notation: When we have (𝐴, 𝑤) ∈ 𝑃 , this means that𝐴 ∈ 𝑉 and𝑤 ∈ (𝑉 ∪ Σ)∗. Then, we write𝐴 → 𝑤,
pronounced “𝐴 to 𝑤” or “𝐴 derives 𝑤” (not 𝐴 implies 𝑤).
Notation: If𝐴 → 𝑤1, 𝐴 → 𝑤2, … , 𝐴 → 𝑤𝑘 then we may write𝐴 → 𝑤1|𝑤2| … |𝑤𝑘.

Ex.

• 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆)
• Σ = {a, b, c}
• 𝑉 = {𝑆, 𝐴, 𝐵, 𝐷} (capital 𝐶 is omitted because it looks too similar to lowercase c)
• 𝑃 ∶ 𝑆 → 𝐴𝐵|𝐵𝐷,𝐴 → a𝐴|c,𝐵 → 𝐵b|ca,𝐷 → ab𝐷|𝜆

Def (informal): Start with a start symbol. Then, replace the start symbol with the RHS of some of its rules
(those that have the start symbol on the left side) and replace 𝑆 with one of the possibilities separated by |s
on the right. In the above example, either𝐴𝐵 or𝐵𝐷 can be substituted for 𝑆. We then continue doing this.
Definition (continued): We say that a variable 𝐸 ∈ 𝑉 derives a sentence 𝑤 ∈ (Σ ∪ 𝑉)∗ in one step if
[𝐸 → 𝑤] ∈ 𝑃 (𝐸 → 𝑤 is a rule).

In our𝐺, for instance,𝐵 derives ca in one step.

Variable𝐸 ∈ 𝑉 derives a sentence 𝑥 ∈ (Σ ∪ 𝑉)∗ in 𝑛 + 1 steps if all of the following hold:
1. 𝑤 derives 𝑦 ∈ (Σ ∪ 𝑉)∗ in 𝑛 steps

1

Ben Rosenberg CSCI 320: Theory of Computation June 15, 2021

2. 𝑦 = 𝑦1𝐹𝑦2 where 𝑦1 and 𝑦2 are strings ∈ (Σ ∪ 𝑉)∗ and 𝐹 ⊂ 𝑉 is a variable
3. [𝐹 → 𝑦0] ∈ 𝑃 is a rule, and 𝑦0 ∈ (Σ ∪ 𝑉)∗ is a string
4. 𝑦1𝑦0𝑦2 = 𝑥

In other words:

𝐸
𝑛+1 steps
−−−−−→ 𝑦 ⟺ 𝐸

𝑛 steps
−−−→ 𝑦1 𝐹 𝑦2 = 𝑦1 𝑦0 𝑦2

The rule here is 𝐹 → 𝑦0.

We are done substituting when we are out of variables in the sentence.

Definition: We say that language 𝐿(𝐺) is generated by grammar 𝐺 if it is the set of exactly those terminal
(∈ Σ) strings that are derivable from the start symbol in any number of steps.
Example, using our previous𝐺:
𝑆 → 𝐴𝐵 → a𝐴𝐵
𝐴 → c

𝐴 → a𝐴 → ac

From the above two, we can see that 𝐴 → a∗c by using the rule 𝐴 → a𝐴 zero or more times, and then
applying𝐴 → c.

Similarly,𝐵 → cab∗, and𝐷 → ab∗.

So, we have, for our starting string:

𝑆 → 𝐴𝐵|𝐵𝐷 → a∗ccab∗ ∪ cab∗(ab)∗

Note that grammars can make languages that do not have regular expressions, though.

Consider a language𝐿2 = {a𝑛b𝑛|𝑛 ≥ 0}. There is no regular expression for this. If we tried to do this with
a∗b∗, we would have aab in the regular expression but not in 𝐿2. So, 𝐿2 ⊂ a∗b∗. We will prove this later in
the course.

Let’s write a grammar for 𝐿2:

• 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆)
• 𝑉 = {𝑆}
• Σ = {a, b}
• 𝑃 ∶ 𝑆 → 𝜆|a𝑆b

So, we have (from above) a𝑛 𝜆 b𝑛 .

Example: Consider 𝐿 = {a𝑛ccb2𝑛|𝑛 ≥ 0}. Then we want the left side to have a telescope of a, and the
right side to have bb.

Let’s write a grammar for 𝐿:
• 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆)
• 𝑉 = {𝑆}
• Σ = {a, b}
• 𝑃 ∶ 𝑆 → a𝑆bb|cc

Theorem: Algorithm 1 :

Input: context‐free grammars𝐺1 and𝐺2
Output: context‐free grammar𝐺 that generates:

Queens College 2 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 15, 2021

1. 𝐿(𝐺1) ∪ 𝐿(𝐺2)
2. 𝐿(𝐺1) ∘ 𝐿(𝐺2)
3. 𝐿(𝐺1)∗

Construction: Let

• 𝐺1 = (𝑉1, Σ1, 𝑃1, 𝑆1)
• 𝐺2 = (𝑉2, Σ2, 𝑃2, 𝑆2)
• 𝑉1 ∩ 𝑉2 = ∅

We need to construct𝐺 = (𝑉 , Σ, 𝑃 , 𝑆).
1. ∪ operation

1. 𝑉 = 𝑉1 ∪ 𝑉2 ∪ {𝑆}, 𝑆 ∉ 𝑉1 ∪ 𝑉2
2. 𝑆 is a new variable
3. 𝑃 = 𝑃1 ∪ 𝑃2 ∪ {𝑆 → 𝑆1|𝑆2}⏟⏟⏟⏟⏟

new rules
2. ∘ operation

1. 𝑉 = 𝑉1 ∪ 𝑉2 ∪ {𝑆}, 𝑆 ∉ 𝑉1 ∪ 𝑉2
2. 𝑃 = 𝑃1 ∪ 𝑃2 ∪ {𝑆 → 𝑆1 ∘ 𝑆2}⏟⏟⏟⏟⏟⏟⏟

new rules
3. ∗ operation

1. 𝑉 = 𝑉1 ∪ 𝑉2 ∪ {𝑆}, 𝑆 ∉ 𝑉1 ∪ 𝑉2
2. 𝑃 = 𝑃1 ∪ 𝑃2 ∪ {𝑆 → 𝜆|𝑆𝑆|𝑆1}⏟⏟⏟⏟⏟⏟⏟

new rules
1. 𝑆 can make zero or more copies of itself

So, the class of context‐free languages is closed under regular operations. That is, applying regular operations
to a context‐free language yields itself a context‐free language.

Algorithm 2 :

Input: regular expression 𝑒
Output: equivalent context‐free grammar;𝐺 such that 𝐿(𝐺) = 𝐿(𝑒)
Construction:

Recursion on the number of operators in 𝑒
Base case: 𝑒 has zero operators, and Σ = {a,b,c}
• any alphabet letter ∈ Σ (ex: a):

– 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆); 𝑉 = {𝑆}, 𝑃 ∶ 𝑆 → a
• 𝜆

– 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆); 𝑉 = {𝑆}, 𝑃 ∶ 𝑆 → 𝜆
• ∅

– 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆); 𝑉 = {𝑆}, 𝑃 = ∅ (no rules)
Recursively: 3 cases for outermost operator in 𝑒 (applied last)

1. 𝑒 = 𝑒1 ∪ 𝑒2
2. 𝑒 = 𝑒1 ∘ 𝑒2
3. 𝑒 = 𝑒∗

1

Then, we apply Algorithm 1 .

Example: 𝑒 = ab∗(a ∪ b) ∪ (bc ∪ 𝑎)∗.

Let’s write a grammar for 𝑒:
• 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆)

Queens College 3 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 15, 2021

• 𝑉 = {𝑆}
• Σ = {a, b, c}
• 𝑃 ∶ 𝑆 → 𝐴|𝐵;𝐴 → a𝐷𝐸;𝐷 → b𝐷|𝜆;𝐸 → a|b;𝐵 → 𝜆|𝐵𝐵|𝐹 ; 𝐹 → bc|a

Figure 1: Diagram of regular expression

Example: Set of strings that are matched parentheses

In other words,Σ = {(,)}, and () is good, but)()() or)(or (() are not good.

Let’s write a grammar for this set:

• 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆)
• 𝑉 = {𝑆}
• Σ = {(,)}
• 𝑃 ∶ 𝑆 → 𝜆|(𝑆)|𝑆𝑆

Example: Set of palindromes overΣ = {a,b,c}
In other words, strings that are equal to their reversal.

Let’s write a grammar for this set:

• 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆)
• 𝑉 = {𝑆}
• Σ = {a,b,c}
• 𝑃 ∶ 𝑆 → 𝜆|a𝑆a|b𝑆b|c𝑆c|a|b|c

This is similar to the previous parenthesis matching, but with a’s, b’s, and c’s as their own sets of parentheses
(minus nesting).

Example: Set of strings that are not palindromes over Σ = {a,b,c}
In other words, strings that are not equal to their reversal. Using our previous analogy, we are looking for a
lack of parentheses.

Let’s write a grammar for this set:

• 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆)
• 𝑉 = {𝑆}
• Σ = {a,b,c}
• 𝑃 ∶ 𝑆 → a𝑆a|b𝑆b|c𝑆c|a𝐴b|a𝐴c|b𝐴a|b𝐴c|c𝐴a|c𝐴b;𝐴 → 𝜆|𝐴𝐴|a|b|c

Wewant to start from the outside of a string, and work inwards until we find a pair of letters equidistant from
the ends that are not equal (good string) or reach the middle (bad string).

Example: 𝐿 ∶ a3𝑛+1b𝑘+2g𝑗c2𝑘+1a𝑝+2b2𝑝g𝑛+3, with 𝑛, 𝑘, 𝑗, 𝑝 ≥ 0.
This telescopes as follows (matching exponents):

Let’s write a grammar for this set:

Queens College 4 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 15, 2021

Figure 2: Grouping the telescoping

• 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆)
• 𝑉 = {𝑆, 𝐴, 𝐵, 𝐷}
• Σ = {a,b,c,g}
• 𝑃 ∶ 𝑆 → aaa𝑆g|a𝐴𝐵ggg;𝐴 → b𝐴cc|bb𝐷c;𝐷 → 𝐷g|𝜆;𝐵 → a𝐵bb|aa

Queens College 5 Professor Bojana Obrenić

	Context-Free Grammars

