Lecture 6

Ben Rosenberg

June 15, 2021

Context-Free Grammars

Regular expressions contain strings; context-free grammars generate strings.
Definition: A context-free grammar is a structure:

$$
G=(\Sigma, V, P, S)
$$

We already know Σ, the alphabet. But similarly to regular expressions, we really have two alphabets - one for the letters used in the grammar, and one for the programming keyboard of symbols used to represent a grammar.

We define each of the components as follows:

- Σ : input/output alphabet; alphabet of terminals
- V : alphabet of variables (non-terminals)
- Note: It is required that V and Σ be disjoint; that is, $V \cap \Sigma=\emptyset$
- Note also that V can never be empty, as it always must contain S
- S : designated start symbol. $S \in V$
- P : finite set of productions (rules). $P \subseteq V \times(\Sigma \cup V)^{*}$
- Note that despite the fact that the right-hand side above is infinite on the level of \aleph_{0}, P itself is finite.

Notation: When we have $(A, w) \in P$, this means that $A \in V$ and $w \in(V \cup \Sigma)^{*}$. Then, we write $A \rightarrow w$, pronounced " A to w " or " A derives w " (not A implies w).
Notation: If $A \rightarrow w_{1}, A \rightarrow w_{2}, \ldots, A \rightarrow w_{k}$ then we may write $A \rightarrow w_{1}\left|w_{2}\right| \ldots \mid w_{k}$.
Ex.

- $G=(V, \Sigma, P, S)$
- $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- $V=\{S, A, B, D\}$ (capital C is omitted because it looks too similar to lowercase c)
- $P: S \rightarrow A B|B D, A \rightarrow \mathrm{a} A| \mathrm{c}, B \rightarrow B \mathrm{~b}|\mathrm{ca}, D \rightarrow \mathrm{ab} D| \lambda$

Def (informal): Start with a start symbol. Then, replace the start symbol with the RHS of some of its rules (those that have the start symbol on the left side) and replace S with one of the possibilities separated by s on the right. In the above example, either $A B$ or $B D$ can be substituted for S. We then continue doing this.
Definition (continued): We say that a variable $E \in V$ derives a sentence $w \in(\Sigma \cup V)^{*}$ in one step if $[E \rightarrow w] \in P(E \rightarrow w$ is a rule $)$.
In our G, for instance, B derives ca in one step.
Variable $E \in V$ derives a sentence $x \in(\Sigma \cup V)^{*}$ in $n+1$ steps if all of the following hold:

1. w derives $y \in(\Sigma \cup V)^{*}$ in n steps
2. $y=y_{1} F y_{2}$ where y_{1} and y_{2} are strings $\in(\Sigma \cup V)^{*}$ and $F \subset V$ is a variable
3. $\left[F \rightarrow y_{0}\right] \in P$ is a rule, and $y_{0} \in(\Sigma \cup V)^{*}$ is a string
4. $y_{1} y_{0} y_{2}=x$

In other words:

$$
E \xrightarrow{n+1 \text { steps }} y \Longleftrightarrow E \xrightarrow{n \text { steps }} y_{1} F y_{2}=y_{1}\left|y_{0}\right| y_{2}
$$

The rule here is $F \rightarrow y_{0}$.
We are done substituting when we are out of variables in the sentence.
Definition: We say that language $L(G)$ is generated by grammar G if it is the set of exactly those terminal $(\in \Sigma)$ strings that are derivable from the start symbol in any number of steps.
Example, using our previous G :
$S \rightarrow A B \rightarrow \mathrm{a} A B$
$A \rightarrow \mathrm{c}$
$A \rightarrow \mathrm{a} A \rightarrow \mathrm{ac}$
From the above two, we can see that $A \rightarrow \mathrm{a}^{*} \mathrm{c}$ by using the rule $A \rightarrow \mathrm{a} A$ zero or more times, and then applying $A \rightarrow \mathrm{c}$.
Similarly, $B \rightarrow \mathrm{cab}^{*}$, and $D \rightarrow \mathrm{ab}^{*}$.
So, we have, for our starting string:
$S \rightarrow A B \mid B D \rightarrow \mathrm{a}^{*} \mathrm{ccab}^{*} \cup \mathrm{cab}^{*}(\mathrm{ab})^{*}$
Note that grammars can make languages that do not have regular expressions, though.
Consider a language $L_{2}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid n \geq 0\right\}$. There is no regular expression for this. If we tried to do this with $\mathrm{a}^{*} \mathrm{~b}^{*}$, we would have aab in the regular expression but not in L_{2}. So, $L_{2} \subset \mathrm{a}^{*} \mathrm{~b}^{*}$. We will prove this later in the course.
Let's write a grammar for L_{2} :

- $G=(V, \Sigma, P, S)$
- $V=\{S\}$
- $\Sigma=\{\mathrm{a}, \mathrm{b}\}$
- $P: S \rightarrow \lambda \mid \mathrm{a} S \mathrm{~b}$

So, we have (from above) \square $\lambda \quad \mathrm{b}^{n}$.
Example: Consider $L=\left\{\mathrm{a}^{n} \mathrm{ccb}^{2 n} \mid n \geq 0\right\}$. Then we want the left side to have a telescope of a , and the right side to have bb.
Let's write a grammar for L :

- $G=(V, \Sigma, P, S)$
- $V=\{S\}$
- $\Sigma=\{\mathrm{a}, \mathrm{b}\}$
- $P: S \rightarrow \mathrm{a} S \mathrm{bb} \mid \mathrm{cc}$

Theorem: Algorithm (1):
Input: context-free grammars G_{1} and G_{2}
Output: context-free grammar G that generates:

1. $L\left(G_{1}\right) \cup L\left(G_{2}\right)$
2. $L\left(G_{1}\right) \circ L\left(G_{2}\right)$
3. $L\left(G_{1}\right)^{*}$

Construction: Let

- $G_{1}=\left(V_{1}, \Sigma_{1}, P_{1}, S_{1}\right)$
- $G_{2}=\left(V_{2}, \Sigma_{2}, P_{2}, S_{2}\right)$
- $V_{1} \cap V_{2}=\emptyset$

We need to construct $G=(V, \Sigma, P, S)$.

1. \cup operation
2. $V=V_{1} \cup V_{2} \cup\{S\}, S \notin V_{1} \cup V_{2}$
3. S is a new variable
4. $P=P_{1} \cup P_{2} \cup \underbrace{\left\{S \rightarrow S_{1} \mid S_{2}\right\}}_{\text {new rules }}$
5. operation
6. $V=V_{1} \cup V_{2} \cup\{S\}, S \notin V_{1} \cup V_{2}$
7. $P=P_{1} \cup P_{2} \cup \underbrace{\left\{S \rightarrow S_{1} \circ S_{2}\right\}}_{\text {new rules }}$
8. * operation
9. $V=V_{1} \cup V_{2} \cup\{S\}, S \notin V_{1} \cup V_{2}$
10. $P=P_{1} \cup P_{2} \cup \underbrace{\left\{S \rightarrow \lambda|S \dot{S}| S_{1}\right\}}_{\text {new rules }}$

1. S can make zero or more copies of itself

So, the class of context-free languages is closed under regular operations. That is, applying regular operations to a context-free language yields itself a context-free language.

Algorithm (2):
Input: regular expression e
Output: equivalent context-free grammar; G such that $L(G)=L(e)$

Construction:

Recursion on the number of operators in e
Base case: e has zero operators, and $\Sigma=\{a, b, c\}$

- any alphabet letter $\in \sum$ (ex: a):
- $G=(V, \Sigma, P, S) ; V=\{S\}, P: S \rightarrow$ a
- λ
- $G=(V, \Sigma, P, S) ; V=\{S\}, P: S \rightarrow \lambda$
- \emptyset
- $G=(V, \Sigma, P, S) ; V=\{S\}, P=\emptyset$ (no rules)

Recursively: 3 cases for outermost operator in e (applied last)

1. $e=e_{1} \cup e_{2}$
2. $e=e_{1} \circ e_{2}$
3. $e=e_{1}^{*}$

Then, we apply Algorithm (1).
Example: $e=\mathrm{ab}^{*}(\mathrm{a} \cup \mathrm{b}) \cup(\mathrm{bc} \cup a)^{*}$.
Let's write a grammar for e :

- $G=(V, \Sigma, P, S)$
- $V=\{S\}$
- $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- $P: S \rightarrow A|B ; A \rightarrow \mathrm{a} D E ; D \rightarrow \mathrm{~b} D| \lambda ; E \rightarrow \mathrm{a}|\mathrm{b} ; B \rightarrow \lambda| B B|F ; F \rightarrow \mathrm{bc}| \mathrm{a}$

Figure 1: Diagram of regular expression
Example: Set of strings that are matched parentheses
In other words, $\Sigma=\{()$,$\} , and () is good, but)()() or) (or (() are not good.$
Let's write a grammar for this set:

- $G=(V, \Sigma, P, S)$
- $V=\{S\}$
- $\Sigma=\{()$,
- $P: S \rightarrow \lambda|(S)| S S$

Example: Set of palindromes over $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
In other words, strings that are equal to their reversal.
Let's write a grammar for this set:

- $G=(V, \Sigma, P, S)$
- $V=\{S\}$
- $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- $P: S \rightarrow \lambda|\mathrm{a} S \mathrm{a}| \mathrm{b} S \mathrm{~b}|\mathrm{c} S \mathrm{c}| \mathrm{a}|\mathrm{b}| \mathrm{c}$

This is similar to the previous parenthesis matching, but with a's, b's, and c's as their own sets of parentheses (minus nesting).
Example: Set of strings that are not palindromes over $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
In other words, strings that are not equal to their reversal. Using our previous analogy, we are looking for a lack of parentheses.
Let's write a grammar for this set:

- $G=(V, \Sigma, P, S)$
- $V=\{S\}$
- $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- $P: S \rightarrow \mathrm{a} S \mathrm{a}|\mathrm{b} S \mathrm{~b}| \mathrm{c} S \mathrm{c}|\mathrm{a} A \mathrm{~b}| \mathrm{a} A \mathrm{c}|\mathrm{b} A \mathrm{a}| \mathrm{b} A \mathrm{c}|\mathrm{c} A \mathrm{a}| \mathrm{c} A \mathrm{~b} ; A \rightarrow \lambda|A A| \mathrm{a}|\mathrm{b}| \mathrm{c}$

We want to start from the outside of a string, and work inwards until we find a pair of letters equidistant from the ends that are not equal (good string) or reach the middle (bad string).
Example: $L: \mathrm{a}^{3 n+1} \mathrm{~b}^{k+2} \mathrm{~g}^{j} \mathrm{c}^{2 k+1} \mathrm{a}^{p+2} \mathrm{~b}^{2 p} \mathrm{~g}^{n+3}$, with $n, k, j, p \geq 0$.
This telescopes as follows (matching exponents):
Let's write a grammar for this set:

Figure 2: Grouping the telescoping

- $G=(V, \Sigma, P, S)$
- $V=\{S, A, B, D\}$
- $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{g}\}$
- $P: S \rightarrow \operatorname{aaa} S \mathrm{~g}|\mathrm{a} A \operatorname{ggg} ; A \rightarrow \mathrm{~b} A \mathrm{cc}| \mathrm{bb} D \mathrm{c} ; D \rightarrow D \mathrm{~g}|\lambda ; B \rightarrow \mathrm{a} B \mathrm{bb}| \mathrm{aa}$

