
Lecture 5

Ben Rosenberg

June 14, 2021

Note: In these notes, the symbol ∘ is used where ⋅may have been used in lecture. They mean the same thing
(concatenation).

Regular Languages and Regular Expressions

Regular operations
Definition: Regular operations are applied to sets (languages). There are three, which follow:

(Note: Σ = {a,b,c} for all examples below.)

Union

Union: The union operation is the usual one as applied to sets.

Example: Consider 𝐿1 = {a, aa, b, cbca, aba, ab, c} and 𝐿2 = {𝜆, a, b, cccba, cc}. Then, the union of
𝐿1 and 𝐿2 is defined as 𝐿1 ∪ 𝐿2 = {𝑥|𝑥 ∈ 𝐿1 ∨ 𝑥 ∈ 𝐿2}. We say that 𝑏 ∈ 𝐿1 ∪ 𝐿2, because 𝑏 is in
either 𝐿1 or 𝐿2 (the fact that it is in both is not relevant).

Union is commutative: that is, 𝐿1 ∪ 𝐿2 = 𝐿2 ∪ 𝐿1 for all languages 𝐿1 and 𝐿2.

Concatenation

Concatenation: The concatenation 𝐿1 ∘ 𝐿2 = {𝑤|(∃𝑥 ∈ 𝐿1)(∃𝑦 ∈ 𝐿2)(𝑤 = 𝑥𝑦)}. It is the set of all
strings that can be obtained by “gluing together” one element of the first language with one element of the
second language.

Example: ab is an element of 𝐿1 ∘ 𝐿2, because 𝑎 ∈ 𝐿1 and 𝑏 ∈ 𝐿2. Furthermore, 𝑎𝑏 ∈ 𝐿1 and 𝜆 ∈ 𝐿2.
Either of these “splits” suffices to show that ab ∈ 𝐿1 ∘𝐿2 – the quantifier is existential, meaning that we are
able to choose whichever split is most useful to us.

Note that concatenation is not commutative. Consider the string ca, which is in 𝐿1 ∘ 𝐿2. This string is not
in 𝐿2 ∘ 𝐿1 as none of the three possible splits of ca can be written as the concatenation of a string from 𝐿2
and a string from 𝐿1.

Assuming we have an algorithm to answer 𝑥 ∈ 𝐿1, or 𝑥 ∈ 𝐿2, then we have an algorithm to answer whether𝑥 ∈ 𝐿1𝐿2 or 𝑥 ∈ 𝐿1 ∘ 𝐿2. We simply take 𝑥 and try all possible “splits”. For each split, we take the left
side and check whether 𝐿1 contains it, and take the right side, and check whether 𝐿2 contains it. If we find
a split for which the left side is in 𝐿1 and the right side is in 𝐿2, then we have shown that 𝑥 ∈ 𝐿1 ∘ 𝐿2.

Aside, before proceeding to the last operation:

1

Ben Rosenberg CSCI 320: Theory of Computation June 14, 2021

Cardinalities The cardinality of |𝐿1 ∪ 𝐿2| ≤ |𝐿1| + |𝐿2|. For the above example, we have |𝐿1 ∪ 𝐿2| =7 + 5 − 2 = 10 because 2 of the elements are duplicates.
The union of 𝐿1 and 𝐿2 can be empty if both 𝐿1 and 𝐿2 are empty.

The cardinality of |𝐿1 ∘ 𝐿2| ≤ |𝐿1| ⋅ |𝐿2|, as there may be duplicate strings that can be created from the
concatenation. ab, for example, belongs to 𝐿1 ∘ 𝐿2 in two different ways, because a is in 𝐿1 and b is in 𝐿2,
and ab is in 𝐿1 and 𝜆 is in 𝐿2.

If either 𝐿1 or 𝐿2 is empty, then their concatenation 𝐿1 ∘ 𝐿2 is empty – you can never find a string that is
in a given language if it is empty, meaning that there are no valid concatenated strings.

Onto the third operation.

Kleene star

Notation: For any set 𝐿: 𝐿0 = {𝜆}. Recursively, 𝐿𝑛+1 = 𝐿𝑛 ∘ 𝐿.
For example, 𝐿1 = 𝐿 ∘ 𝐿0 = 𝐿 ∘ {𝜆} = 𝐿. Similarly, 𝐿2 = 𝐿 ∘ 𝐿 = 𝐿𝐿.
Definition: The Kleene star of a language 𝐿, denoted 𝐿∗, is equal to:

𝐿∗ = ⋃
𝑥≥0

𝐿𝑘 = 𝐿0 ∪ 𝐿1 ∪ 𝐿2 ∪ ⋯

This is, in effect, the set of all strings that can be obtained by gluing together zero or more strings of the
original language.

Another example: aaa ∈ 𝐿∗
1. The split a|aa ∈ 𝐿2

1 works, as do a|a|a ∈ 𝐿3
1 and aa|a ∈ 𝐿2

1.

In fact, there are no strings (fromΣ defined above) that are not contained in𝐿∗
1 because each of the elements

of Σ are contained in 𝐿∗
1.

We defineΣ∗ as the set of all strings overΣ. Since Σ ⊆ 𝐿1, Σ∗ ⊆ 𝐿∗
1.

The Kleene star of any language – even ∅, the empty language – always contains at least one element: namely,
𝜆. So, ()∗ ≠ ∅ in all cases.
There are two cases in which 𝐿∗ is finite. The first is that in which 𝐿 = ∅, which gives ∅∗ = 𝜆. The second
is 𝐿 = {𝜆}, which also gives 𝐿∗ = {𝜆}.
If 𝐿∗ is not finite, then its cardinality is equal to ℵ0. (See Gödel injection.)

Regular expressions
Definition: Given an alphabet Σ = {a,b,c}, the class of regular languages over Σ contains exactly those
languages which are obtained by finitely many applications of regular operations to the sets:

∅, {𝜆}, {a}, {b}, {c}
Definition: A regular set is any set which can be obtained by starting from the above, and applying any of the
regular operations.

Definition: A regular expression over an alphabet {Σ = {a,b,c}} is a string over the alphabet:

{a, b, c, (,), ∪, ∘, ∗, ∅, 𝜆}
This is the programmer’s alphabet (our “keyboard”), which represents a regular language. Note that these are
all symbols and do not actually mean anything until they are used to write regular expressions.

Queens College 2 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 14, 2021

Observe that the alphabet “keyboard” used to define regular expressions contains Σ. It also contains the
seven symbols that are not contained inΣ and are used to represent notation.
Examples of translation from language to regular expression:

language regular expression
∅ ∅

{𝜆} 𝜆
{a} a

recursively, if:
𝐿1 ↦ ↦ 𝑒1𝐿2 ↦ ↦ 𝑒2
then,

𝐿1 ∪ 𝐿2 (𝑒1) ∪ (𝑒2)
𝐿1 ∘ 𝐿2 (𝑒1) ∘ (𝑒2)

𝐿∗
1 (𝑒1)∗

Order of operations:

1. ∗
2. ∘
3. ∪

Examples (⟺ is used to denote going between regex and languages):

a ∪ bc∗ = (a) ∪ ((b) ∘ ((c)∗))

a + bc2 = (a) ∪ ((b) ∘ ((c)2))

∅ ∘ 𝜆 ⟺ ∅

a ⟺ {a}

a ∪ b ⟺ {a, b}

ab ⟺ {ab}

(a ∪ b)(a ∪ b) = (a ∪ b) ∘ (a ∪ b) ⟺ {aa, ab, ba, bb}

a∗ ⟺ {𝜆, a, aa, aaa,… }
The assignment in class is always the following:

Construct a regular expression that defines the set of exactly those strings overΣ that satisfy the
following property:

consists of a’s and b’s ⟹ (a ∪ b)∗
Aside: “𝐴 contains 𝐵” means that 𝐵 is a subset of or element of 𝐴. “𝐴 consists of 𝐵” means that all of 𝐴
are defined as being𝐵.

Queens College 3 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 14, 2021

More examples

all possible strings

⟹ (a ∪ b ∪ 𝑐)∗
strings that have length equal to 3 (should be 27 of them)

⟹ (a ∪ b ∪ c) ∘ (a ∪ b ∪ c) ∘ (a ∪ b ∪ c)
length≤ 3

⟹ (a ∪ b ∪ c ∪ 𝜆) ∘ (a ∪ b ∪ c ∪ 𝜆) ∘ (a ∪ b ∪ c ∪ 𝜆)
consist of even # of a’s

⟹ (aa)∗
Note that (aa)∗ means an even number of a’s, while aa∗ is any number of a’s greater than 1.

even length

⟹ ((a ∪ b ∪ c) ∘ (a ∪ b ∪ c))
∗

odd length

⟹ ((a ∪ b ∪ c) ∘ (a ∪ b ∪ c))
∗
∘ (a ∪ b ∪ 𝑐)

contains odd number of a’s (contains means it could also have b’s and c’s)

⟹ (a(b ∪ c)∗a ∪ b ∪ c)∗)a(b ∪ c)∗
contains even number of a’s (contains means it could also have b’s and c’s)

⟹ (b ∪ c)∗a(b ∪ c)∗a(b ∪ c)∗)∗(b ∪ c)∗
contain substring abcb

⟹ (a ∪ b ∪ c)∗abcb(a ∪ b ∪ c)∗
contain as a substring either abb or bca

⟹ (a ∪ b ∪ c)∗(abb ∪ bca)(a ∪ b ∪ c)∗
contain as a substring both abb and bca

⟹ (a∪b∪c)∗abb(a∪b∪c)∗bca(a∪b∪c)∗ ⋃(a∪b∪c)∗bca(a∪b∪c)∗abb(a∪
b ∪ c)∗ ⋃(a ∪ b ∪ c)∗abbca(a ∪ b ∪ c)∗ ⋃(a ∪ b ∪ c)∗bcabb(a ∪ b ∪ c)∗
evidently, intersection is a challenge.

begin with bca

⟹ bca(a ∪ b ∪ c)∗
do not begin with bca

⟹ …?
We want, here, to find a means of a “complement”. This one is the complement of the previous answer. We
could write out the 26 correct 3‐letter strings that are not bca, and then add (a ∪ b ∪ c)∗ to the end, except
that the length does not have to be 3 or greater.

We know that all strings of length 2 or less are good. Given the assumption that all strings of length 2 or less
are good, then we can actually do it without enumerating all 27 of them.

We have:

Queens College 4 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 14, 2021

(a ∪ b ∪ c ∪ 𝜆)∗(a ∪ b ∪ c ∪ 𝜆)∗

⋃
(a ∪ c)(a ∪ b ∪ c)∗

⋃
b(a ∪ b)(a ∪ b ∪ c)∗

⋃
bc(b ∪ c)(a ∪ b ∪ c)∗

Theorem (to be proven later): If there is a regular expression for some language, then there is a regular ex‐
pression for its complement.

Aside: Good book: “Regular Algebra and Finite Machines”, by John Conway

Queens College 5 Professor Bojana Obrenić

	Regular Languages and Regular Expressions
	Regular operations
	Union
	Concatenation
	Kleene star

	Regular expressions
	More examples

