Lecture 5

Ben Rosenberg

June 14, 2021

Note: In these notes, the symbol \circ is used where \cdot may have been used in lecture. They mean the same thing (concatenation).

Regular Languages and Regular Expressions

Regular operations

Definition: Regular operations are applied to sets (languages). There are three, which follow:

(Note: $\Sigma = \{a, b, c\}$ for all examples below.)

Union

Union: The union operation is the usual one as applied to sets.

Example: Consider $L_1 = \{a, aa, b, cbca, aba, ab, c\}$ and $L_2 = \{\lambda, a, b, cccba, cc\}$. Then, the union of L_1 and L_2 is defined as $L_1 \cup L_2 = \{x | x \in L_1 \lor x \in L_2\}$. We say that $b \in L_1 \cup L_2$, because b is in either L_1 or L_2 (the fact that it is in both is not relevant).

Union is commutative: that is, $L_1 \cup L_2 = L_2 \cup L_1$ for all languages L_1 and L_2 .

Concatenation

Concatenation: The concatenation $L_1 \circ L_2 = \{w | (\exists x \in L_1) (\exists y \in L_2) (w = xy)\}$. It is the set of all strings that can be obtained by "gluing together" one element of the first language with one element of the second language.

Example: ab is an element of $L_1 \circ L_2$, because $a \in L_1$ and $b \in L_2$. Furthermore, $ab \in L_1$ and $\lambda \in L_2$. Either of these "splits" suffices to show that $ab \in L_1 \circ L_2$ – the quantifier is existential, meaning that we are able to choose whichever split is most useful to us.

Note that concatenation is *not* commutative. Consider the string ca, which is in $L_1 \circ L_2$. This string is not in $L_2 \circ L_1$ as none of the three possible splits of ca can be written as the concatenation of a string from L_2 and a string from L_1 .

Assuming we have an algorithm to answer $x \in L_1$, or $x \in L_2$, then we have an algorithm to answer whether $x \in L_1L_2$ or $x \in L_1 \circ L_2$. We simply take x and try all possible "splits". For each split, we take the left side and check whether L_1 contains it, and take the right side, and check whether L_2 contains it. If we find a split for which the left side is in L_1 and the right side is in L_2 , then we have shown that $x \in L_1 \circ L_2$.

Aside, before proceeding to the last operation:

Cardinalities The cardinality of $|L_1 \cup L_2| \le |L_1| + |L_2|$. For the above example, we have $|L_1 \cup L_2| = 7 + 5 - 2 = 10$ because 2 of the elements are duplicates.

The union of L_1 and L_2 can be empty if both L_1 and L_2 are empty.

The cardinality of $|L_1 \circ L_2| \leq |L_1| \cdot |L_2|$, as there may be duplicate strings that can be created from the concatenation. ab, for example, belongs to $L_1 \circ L_2$ in two different ways, because a is in L_1 and b is in L_2 , and ab is in L_1 and λ is in L_2 .

If either L_1 or L_2 is empty, then their concatenation $L_1 \circ L_2$ is empty – you can never find a string that is in a given language if it is empty, meaning that there are no valid concatenated strings.

Onto the third operation.

Kleene star

Notation: For any set L: $L^0 = \{\lambda\}$. Recursively, $L^{n+1} = L^n \circ L$.

For example, $L^1 = L \circ L^0 = L \circ \{\lambda\} = L$. Similarly, $L^2 = L \circ L = LL$.

Definition: The **Kleene star** of a language L, denoted L^* , is equal to:

$$L^* = \bigcup_{x \ge 0} L^k = \boxed{L^0 \cup L^1 \cup L^2 \cup \cdots}$$

This is, in effect, the set of all strings that can be obtained by gluing together zero or more strings of the original language.

Another example: $aaa \in L_1^*$. The split $a|aa \in L_1^2$ works, as do $a|a|a \in L_1^3$ and $aa|a \in L_1^2$.

In fact, there are no strings (from Σ defined above) that are not contained in L_1^* because each of the elements of Σ are contained in L_1^* .

We define Σ^* as the set of all strings over Σ . Since $\Sigma \subseteq L_1, \Sigma^* \subseteq L_1^*$.

The Kleene star of any language – even \emptyset , the empty language – always contains at least one element: namely, λ . So, $()^* \neq \emptyset$ in all cases.

There are two cases in which L^* is finite. The first is that in which $L = \emptyset$, which gives $\emptyset^* = \lambda$. The second is $L = \{\lambda\}$, which also gives $L^* = \{\lambda\}$.

If L^* is not finite, then its cardinality is equal to \aleph_0 . (See Gödel injection.)

Regular expressions

Definition: Given an alphabet $\Sigma = \{a, b, c\}$, the class of regular languages over Σ contains exactly those languages which are obtained by finitely many applications of regular operations to the sets:

$$\emptyset, \{\lambda\}, \{a\}, \{b\}, \{c\}$$

Definition: A **regular set** is any set which can be obtained by starting from the above, and applying any of the regular operations.

Definition: A regular expression over an alphabet $\{\Sigma = \{a, b, c\}\}$ is a string over the alphabet:

$$\{\texttt{a, b, c, (,), \cup, \circ, *, \emptyset, \lambda}\}$$

This is the *programmer's alphabet* (our "keyboard"), which represents a regular language. Note that these are all *symbols* and do not actually mean anything until they are used to write regular expressions.

Observe that the alphabet "keyboard" used to define regular expressions contains Σ . It also contains the seven symbols that are not contained in Σ and are used to represent notation.

Examples of translation from language to regular expression:

language	regular expression
Ø	Ø
$\{\lambda\}$	λ
$\{a\}$	a
recursively, if:	
$L_1 \mapsto$	$\mapsto e_1$
$L_2 \mapsto$	$\mapsto e_2$
then,	
$L_1 \cup L_2$	$(e_1) \cup (e_2)$
$L_1 \circ L_2$	$(e_1) \circ (e_2)$
L_1^*	$(e_1)^*$

Order of operations:

- 1. * 2. •
- **2**. ∪ **3**. ∪
- **3**. U

Examples (\iff is used to denote going between regex and languages):

$$\begin{aligned} \mathbf{a} \cup \mathbf{b} \mathbf{c}^* &= (\mathbf{a}) \cup \left((\mathbf{b}) \circ ((\mathbf{c})^*) \right) \\ \mathbf{a} + \mathbf{b} \mathbf{c}^2 &= (\mathbf{a}) \cup \left((\mathbf{b}) \circ ((\mathbf{c})^2) \right) \\ \emptyset \circ \lambda \iff \emptyset \\ \mathbf{a} \iff \{\mathbf{a}\} \\ \mathbf{a} \longleftrightarrow \{\mathbf{a}\} \\ \mathbf{a} \cup \mathbf{b} \iff \{\mathbf{a}, \mathbf{b}\} \\ \mathbf{a} \mathbf{b} \iff \{\mathbf{a}, \mathbf{b}\} \\ \mathbf{a} \mathbf{b} \iff \{\mathbf{a}\mathbf{b}\} \\ (\mathbf{a} \cup \mathbf{b})(\mathbf{a} \cup \mathbf{b}) &= (\mathbf{a} \cup \mathbf{b}) \circ (\mathbf{a} \cup \mathbf{b}) \iff \{\mathbf{a}\mathbf{a}, \mathbf{a}\mathbf{b}, \mathbf{b}\mathbf{a}, \mathbf{b}\mathbf{b}\} \end{aligned}$$

 $\mathbf{a}^* \iff \{\lambda, \mathbf{a}, \mathbf{a}\mathbf{a}, \mathbf{a}\mathbf{a}\mathbf{a}, \dots\}$

The assignment in class is always the following:

Construct a regular expression that defines the set of exactly those strings over Σ that satisfy the following property:

consists of a's and b's \implies $(a \cup b)^*$

Aside: "A contains B" means that B is a subset of or element of A. "A consists of B" means that all of A are defined as being B.

Queens College

More examples

all possible strings

 $\implies (\mathbf{a} \cup \mathbf{b} \cup c)^*$

strings that have length equal to 3 (should be 27 of them)

$$\begin{array}{l} \implies \ (\mathbf{a} \cup \mathbf{b} \cup \mathbf{c}) \circ (\mathbf{a} \cup \mathbf{b} \cup \mathbf{c}) \circ (\mathbf{a} \cup \mathbf{b} \cup \mathbf{c}) \\ \mathsf{length} \leq \mathbf{3} \\ \implies \ (\mathbf{a} \cup \mathbf{b} \cup \mathbf{c} \cup \lambda) \circ (\mathbf{a} \cup \mathbf{b} \cup \mathbf{c} \cup \lambda) \circ (\mathbf{a} \cup \mathbf{b} \cup \mathbf{c} \cup \lambda) \end{array}$$

consist of even # of a's

$$\implies$$
 (aa)*

Note that $(aa)^*$ means an even number of a's, while aa* is any number of a's greater than 1.

even length

$$\implies \Big(({\tt a} \cup {\tt b} \cup {\tt c}) \circ ({\tt a} \cup {\tt b} \cup {\tt c})\Big)^*$$

odd length

$$\implies \Big((\mathtt{a} \cup \mathtt{b} \cup \mathtt{c}) \circ (\mathtt{a} \cup \mathtt{b} \cup \mathtt{c}) \Big)^* \circ (\mathtt{a} \cup \mathtt{b} \cup c)$$

contains odd number of a's (contains means it could also have b's and c's)

 $\implies (\mathtt{a}(\mathtt{b} \cup \mathtt{c})^* \mathtt{a} \cup \mathtt{b} \cup \mathtt{c})^*) \mathtt{a}(\mathtt{b} \cup \mathtt{c})^*$

contains even number of a's (contains means it could also have b's and c's)

$$\implies (b \cup c)^* a(b \cup c)^* a(b \cup c)^*)^* (b \cup c)^*$$

contain substring abcb

$$\implies (a \cup b \cup c)^* abcb(a \cup b \cup c)^*$$

contain as a substring either abb or bca

$$\implies (a \cup b \cup c)^* (abb \cup bca) (a \cup b \cup c)^*$$

contain as a substring both abb and bca

$$\implies (a \cup b \cup c)^* abb(a \cup b \cup c)^* bca(a \cup b \cup c)^* \bigcup (a \cup b \cup c)^* bca(a \cup b \cup c)^* abb(a \cup b \cup c)^* \bigcup (a \cup b \cup c)^* \bigcup (a \cup b \cup c)^* bcabb(a \cup b \cup c)^*$$

evidently, intersection is a challenge.

begin with bca

$$\implies$$
 bca(a \cup b \cup c)*

do not begin with bca

 \implies ...?

We want, here, to find a means of a "complement". This one is the complement of the previous answer. We could write out the 26 correct 3-letter strings that are not bca, and then add $(a \cup b \cup c)^*$ to the end, except that the length does not have to be 3 or greater.

We know that all strings of length 2 or less are good. Given the assumption that all strings of length 2 or less are good, then we can actually do it without enumerating all 27 of them.

We have:

Theorem (to be proven later): If there is a regular expression for some language, then there is a regular expression for its complement.

Aside: Good book: "Regular Algebra and Finite Machines", by John Conway