
Lecture 2

Ben Rosenberg

June 8, 2021

Mathematical background (cont.)
Previously: predicates (template for making propositions); propositional function. Takes some argument from
some domain, and transforms it into a proposition. In order to define a predicate, we need to know the
domain that its arguments come from and the way it transforms the argument into a proposition.

For the time being, our domain will be the set of natural numbers,ℕ = {0, 1, 2, 3, … }.

Variables
Suppose that we have a predicate which squares an argument, adds one, and checks whether it is> 18.
One value that would make this predicate true is 10, and one that would make it false is 0.
Another example: consider the proposition in which we multiply some number by 2, add the square of a
different number, and check whether that is greater than 3 times the last number minus 2. In other words:

2■ + □2 > 3□ − 2

This is difficult to understand and so we introduce variables to represent arbitrary equivalent values in a
predicate function. For instance, in the above example, it is better to write:

2𝑥 + 𝑦2 > 3𝑦 − 2

“A predicate is a named box”

We can write the entire predicate as𝑄(𝑥, 𝑦) = 2𝑥 + 𝑦2 > 3𝑦 − 2. 𝑄 is the propositional function, with
arguments𝑥 and 𝑦. We can calculate the truth value of𝑄(𝑎, 𝑏) by plugging𝑎 and 𝑏 in for𝑥 and 𝑦 respectively
within𝑄. For example,𝑄(1, 2) = 2 ⋅ 1 + 22 > 3 ⋅ 2 − 2 ⟹ false.

Universal Quantifiers
Recall the example from last time in which we wanted to fail every student.

Consider predicate 𝑃(𝑥). Then, (∀𝑥)(𝑃 (𝑥)) is pronounced “for all 𝑥, 𝑃(𝑥)”, and is a proposition that is
true exactly when (if and only if) 𝑃(𝑥) is true for every value of 𝑥 in the domain of 𝑃 . This is, in essence, a
generalized conjunction operator:

(∀𝑥)(𝑃 (𝑥)) = 𝑃(0) ∧ 𝑃(1) ∧ 𝑃(2) ∧ 𝑃(3) ∧ ⋯

We need this generalized conjunction operator in order to be rid of the “and so on” idea. Consider the se‐
quence that begins 𝑠0 = 0, 𝑠1 = 1, 𝑠2 = 2, 𝑠3 = 3, “and so on”. The logical continuation is 𝑠4 = 4,

1

Ben Rosenberg CSCI 320: Theory of Computation June 8, 2021

as the sequence appears to be an enumeration of the natural numbers. However, it could also have been
𝑠𝑚 ∶= 𝑚(𝑚 − 1)(𝑚 − 2)(𝑚 − 3) + 𝑚, which would mean that 𝑠4 = 28. We need a way to describe
concretely the behaviour of infinite sequences outside of “and so on”, so that we can be sure as to its values
at any given place.

And so we define ∀ as the “for all” operator, the universal quantifier, as the generalized infinite conjunction
of propositions.

For example, consider (∀𝑥)(𝑥 > 3) ∶ 𝑥 ∈ ℕ. This is a false statement – we can enumerate the con‐
junctions as 0 > 3 ∧ 1 > 3 ∧ 2 > 3 ∧ 3 > 3 ∧ … and we can clearly see that the entire proposition is
false.

Existential quantifier
(∃𝑥)(𝑃 (𝑥)) is a proposition which is true exactly when 𝑃(𝑥) is true for at least one value of 𝑥 in the
domain. This is the generalized disjunction: 𝑃(1) ∨ 𝑃(2) ∨ 𝑃(3) ∨ ….
Now consider our previous example but with the existential quantifier: (∃𝑥)(𝑥 > 3). This is true because
there is at least one example (e.g., 𝑥 = 4) for which 𝑥 > 3 in the domain.
Both of these quantifiers allow us to make generalized statements about the domain without discussing
individuals.

Consider 𝐺(𝑥) ⇔ student 𝑥 fails. Then, to return to our original motivating problem, we would say that
every student fails with the proposition (∀𝑥)(𝐺(𝑥)).

Free and bound variables
Consider the predicate 𝑅(𝑥). We cannot say anything about the truth value of 𝑅(𝑥) other than that its
value depends on 𝑥. Similarly, 𝑅(𝑥) = 𝑅(𝑦) depends on both 𝑥 and 𝑦 – in general, it is false unless we
know that 𝑥 = 𝑦.
Now consider (∀𝑥)(𝑅(𝑥)) = (∀𝑦)(𝑅(𝑦)). This is true, because neither of these propositions truly depend
on 𝑥 or 𝑦, as they relate to every value in the domain. (We assume that 𝑥 and 𝑦 have the same domain.) To
intuitively grasp this we can harken back to our notion of boxes, and realize that 𝑥 and 𝑦 are simply different
boxes which can take any value in the domain.

Consider𝑅(𝑥) for free variable x. We say that 𝑥 must receive a value to turn this into a proposition –𝑅(𝑥)
depends on 𝑥. A free variable is a variable on which an expression depends.
Now consider (∀𝑥)(𝑅(𝑥)). Here, 𝑥 is a bound variable, because this expression does not depend on 𝑥
– by definition, this expression requires that every possible value be plugged into 𝑥, and then the infinite
conjunction be taken. There is no freedom to use arbitary values.

Consider the expression (∃𝑥)(𝑥 > 𝑦). This is a predicate in 𝑦, because while 𝑥 is bound, 𝑦 is free. Let this
equal 𝑇 (𝑦).
𝑇 (1) is (∃𝑥)(𝑥 > 1) which is true; 𝑇 (17) is (∃𝑥)(𝑥 > 17) which is true. We know that for all 𝑦, 𝑇 (𝑦)
is true – that is, (∀𝑦)(𝑇 (𝑦)). Plugging in our original 𝑇 (𝑦) we can say that (∀𝑦)(∃𝑥)(𝑥 > 𝑦).
We can rename 𝑥 to 𝑤 without consequence because 𝑥 is bound, which results in the (still true) statement
that (∀𝑦)(∃𝑤)(𝑤 > 𝑦). This can be repeated so long as the names aren’t identical to a previously defined
variable (that is, the new names cannot occur in the scope of renaming). In fact, this issue of scope is the one
which causes conflicts in the renaming of variables to predefined names in programming languages.

Multiple quantifiers
Ex. (∀𝑥)(∀𝑦)(𝑥 > 𝑦). This is clearly false because 𝑥 and 𝑦 take all possible pairs of values, from which
infinitely many false propositions emerge.

Queens College 2 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 8, 2021

Ex. (∃𝑥)(∃𝑦)(𝑥 > 𝑦). This is clearly true because 𝑥 and 𝑦 can take all possible pairs of values, from which
at least one true proposition emerges.

Alternating quantifiers

Some examples:

• (∀𝑥)(∃𝑦)(𝑦 ≥ 𝑥): true
• (∃𝑦)(∀𝑥)(𝑦 ≥ 𝑥): false
• (∀𝑦)(∃𝑥)(𝑦 ≥ 𝑥): true
• (∃𝑥)(∀𝑦)(𝑦 ≥ 𝑥): true

The second and third of these were difficult for the class. The third one should be written out in terms of the
infinite conjunction supplied by the ∀ operator as ∃𝑥 ∶ 0 ≥ 𝑥 ∧ ∃𝑥 ∶ 1 ≥ 𝑥 ∧ ∃𝑥 ∶ 2 ≥ 𝑥 ∧ …. Since
there is one of these (namely, 0) we can reason that each of these will be true for 𝑥 = 0. (More formally, we
could prove by induction that this is the case for all 𝑦 but that level of rigor is currently unnecessary.)
The way given in class to think about this is as though the “adversary has chosen 𝑦”, as though proving
the truth value of the proposition were a game theory problem: we are helpless as to the values of 𝑦, as it is
beyond our control. We as the evaluators of the proposition are the choosers of𝑥. The existential quantifiers
are our choices, the universal quantifiers are the adversary’s choices, and the order in which they are written
is the order in which the choices are made.

The second one of these examples is similar to the previously‐covered one, in which the adversary can always
choose a number one higher than ours. It is false because the natural numbersℕ are infinite.

When the claim is false, we can prove the negation. Applying DeMorgan’s laws to the universal quantifier
is possible as follows:

¬(∧) = (¬) ∨ (¬)

¬(∃𝑥)() = (∀𝑥)(¬)

¬(∀𝑥)() = (∃𝑥)(¬)

We know that the negation of the second example is therefore (∀𝑦)(∃𝑥)(𝑦 < 𝑥), which we can prove to
be false by choosing 𝑥 = 𝑦 + 1 for all of our adversary’s choices.
Example game theory quantifier alternation:

(∀𝑥)(∃𝑦)(∀𝑞)(∃𝑣)(∀𝑡)(∃𝑠)(𝑥𝑦 + 𝑡 − 𝑤 < 𝑠 + 𝑣)

This is true, which we can prove with our game theory method easily. As this was done in class it is left as
an exercise to those reviewing the notes.

Sets
Consider the expression 𝑥 ∈ 𝑆 . This is a predicate in two variables, 𝑥 and 𝑆 , and is pronounced “𝑥 is an
element of 𝑆”, or “𝑥 is in 𝑆”. Let’s say that we fix 𝑆. Then, we propose that 𝑃𝑠(𝑥) is equivalent to 𝑥 ∈ 𝑆 .
𝑃𝑠(𝑥) splits the natural numbers into two parts – the false part and the true part. In fact, every predicate
does this, splitting the universe into the parts that make it true and false.

Sets allow us to explore the notion of collections of elements of the domain which make a predicate true or
false, grouping individuals rather than simply classifying them.

Queens College 3 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 8, 2021

The grading book predicate, for example, splits the domain of students into those who pass and those who
fail. If we want to perform some kind of operation on all the students who passed, we would need to employ
the notion of a set.

We can write a set 𝑆 = {𝑥|𝑃𝑠(𝑥)}. Note that 𝑥 is bound – 𝑃𝑠(𝑥) is defining 𝑥 here; we could write
𝑆 = {𝑦|𝑃𝑠(𝑦)} to the same effect. We can read this as “𝑆 is the set of all 𝑥 such that 𝑃𝑠(𝑥)”.
More notation: 𝑥 ∉ 𝑆 ⇔ ¬(𝑥 ∈ 𝑆), read as “𝑥 is not in 𝑆”.
We can also specify a set elementwise: 𝐴 = {1, 2, 3, 4}. The predicate in this case is defined implicitly, as
𝐴 = {𝑥|𝑥 = 1 ∨ 𝑥 = 2 ∨ 𝑥 = 3 ∨ 𝑥 = 4}.
Definition: Proper subset. 𝐴 ⊂ 𝐵 ⇔ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵
𝐴 ⊂ 𝐵 ⇔ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊈ 𝐴
𝐴 is a proper subset of𝐵 if𝐴 is a subset of𝐵 but not equal to𝐵.

Set operations

Definitions:

• 𝐴 ⊆ 𝐵 ⇔ (∀𝑥)(𝑥 ∈ 𝐴 ⟹ 𝑥 ∈ 𝐵): subset
• 𝐴 = 𝐵 ⇔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴): “two‐way inclusion” (set equality)
• 𝐴 ∪ 𝐵 = {𝑥|𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}: union
• 𝐴 ∩ 𝐵 = {𝑥|𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}: intersection

Theorem: 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴
Proof:

𝐴 ∪ 𝐵 = {𝑥|𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}
= {𝑥|𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴}(∨ is commutative)
= 𝐵 ∪ 𝐴(definition of union)

The proof is the same for the theorem of𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴, as ∧ is commutative.
Definition: 𝐴\𝐵 = {𝑥|𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵} (set difference – not commutative)

If all sets are known to belong to a certain set 𝐸 as subsets, then we can write 𝐴 = 𝐸\𝐴, pronounced “𝐴
complement” or “the complement of𝐴”. Note that we need to specify the universe set𝐸 before we specify
complement implicitly.

Theorem: 𝐴 ⊆ 𝐴
Proof:

(∀𝑥)(𝑥 ∈ 𝐴 ⟹ 𝑥 ∈ 𝐴) (true by definition of implication – true implies true, and false implies false)

So,𝐴 ⊆ 𝐴 by the definition of subset.

□
Definition: The empty set is ∅ = {} = {𝑥|𝑥 ≠ 𝑥}. The predicate for this set is always false, so nothing
belongs to the empty set – it has zero elements. Thus, the predicate that 𝑥 ∈ ∅ is false for all 𝑥.
Theorem: The empty subset is a subset of every set: ∅ ⊆ 𝐴.
Proof:

Queens College 4 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 8, 2021

∅ ⊆ 𝐴 ⇔ (∀𝑥)(𝑥 ∈ ∅ ⟹ 𝑥 ∈ 𝐴) (definition of subset)
⇔ (∀𝑥)(true) (definition of implication)

□
Theorem: The empty set is unique: if ∅1 and ∅2 are empty sets, then ∅1 = ∅2.

Proof:

∅1 ⊆ ∅2 (previous theorem –∅1 is empty)
∅2 ⊆ ∅1 (previous theorem –∅2 is empty)
∅1 = ∅2

□
Theorem: {𝑎, 𝑎} = {𝑎}: Each set contains no duplicate elements.
Proof:

{𝑎, 𝑎} = {𝑥|𝑥 = 𝑎 ∨ 𝑥 = 𝑎} (definition of this notation)
= {𝑥|𝑥 = 𝑎} (truth table for 𝑝 ∨ 𝑝 ⇔ 𝑝)
= {𝑎} (notation for curly braces again)

□
Theorem: {𝑎, 𝑏} = {𝑏, 𝑎}: Sets are unordered.
Proof:

{𝑎, 𝑏} = {𝑥|𝑥 = 𝑎 ∨ 𝑥 = 𝑏} (definition of this notation)
= {𝑥|𝑥 = 𝑏 ∨ 𝑥 = 𝑎} (commutativity of ∨)
= {𝑏, 𝑎} (notation for curly braces again)

□
Theorem: 𝐴 ∪ ∅ = 𝐴
Proof: 𝐴 ∪ ∅ = {𝑥|𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅} = {𝑥|𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ∅} because 𝑝 ∨ false = 𝑝
Other interesting corollaries:

• 𝐴 ∪ 𝐴 = 𝐸
• 𝐸 = ∅
• ∅ = 𝐸

Ordered pairs
An ordered pair (𝑥, 𝑦) is a set {{𝑎, 𝑏}, {𝑏}} containing the set {𝑎, 𝑏} and the singleton set {𝑏}.
Theorem: (𝑎, 𝑏) = (𝑐, 𝑑) ⇔ 𝑎 = 𝑐 ∧ 𝑏 = 𝑑: Ordered pairs are equal if and only if they are equal
componentwise.

Queens College 5 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 8, 2021

Note: when proving a theorem that contains an iff, we need to prove both directions.

Proof:

(⇐): Need to prove that if 𝑎 = 𝑐 ∧ 𝑏 = 𝑑 then (𝑎, 𝑏) = (𝑐, 𝑑).
This is evident; we can simply substitute.

(⇒): Need to prove that if (𝑎, 𝑏) = (𝑐, 𝑑) then 𝑎 = 𝑐 ∧ 𝑏 = 𝑑.
Indeed:

(𝑎, 𝑏) = (𝑐, 𝑑) ⟹ {{𝑎, 𝑏}, {𝑏}} = {{𝑐, 𝑑}, {𝑑}}
Now we need to use set equality (𝐴 = 𝐵 ⇔ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴).
Case 1: 𝑏 = 𝑑, 𝑎 = 𝑐. This works.
Case 2: We have a two‐element set equal to a one‐element set. This is possible only if 𝑎 = 𝑏 = 𝑑 = 𝑐. In
this case, it still holds that 𝑎 = 𝑐 and 𝑏 = 𝑑.
Thus, ordered pairs are equal if any only if they are componentwise equal.

Set product (Cartesian product)
Definition: Given sets𝐴 and𝐵, the set product𝐴 × 𝐵 of𝐴 and𝐵 is equal to the following set of ordered
pairs:

𝐴 × 𝐵 = {(𝑥, 𝑦)|𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵}

To improve our intuition of the operation, we might wholly embrace the “Cartesian” element of the Cartesian
product and illustrate the operation on a graph. With two axes, one for the elements of 𝐴 and one for the
elements of 𝐵, and note that each point on the plane in the upper right‐hand quadrant will correspond to
one of the ordered pairs in the set.

Define the cardinality or size (number of elements) of a set𝐴 as |𝐴|. Then, the cardinality of the set product
of two sets𝐴 and𝐵 is |𝐴| ⋅ |𝐵|.
Other relevant fact: 𝐴 × ∅ = ∅ (note that using our above definition of size, |𝐴 × ∅| = 0 ∀𝐴).
Definition: The set of subsets of a given set 𝑆 is called the power set𝒫(𝑆) = {𝑥|𝑥 ⊆ 𝑆}. (The “preferred
name” according to Professor Obrenić is simply “the set of all subsets” but everyone calls it the power set.)

Ex. 𝐴 = {1, 2, 3}
Then:

𝒫(𝐴) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Theorem: If |𝑆| = 𝑚, then |𝒫(𝑆)| = 2𝑚. (This is where the name “power set” comes from.)

Wewill continue with the proof of this next time. (Hint: wemust choose whether or not each of the elements
is to be included, which is two choices for each element in the set.)

Queens College 6 Professor Bojana Obrenić

	Mathematical background (cont.)
	Variables
	Universal Quantifiers
	Existential quantifier
	Free and bound variables
	Multiple quantifiers
	Alternating quantifiers

	Sets
	Set operations

	Ordered pairs
	Set product (Cartesian product)

