
Ben Rosenberg CSCI 320: Theory of Computation June 9, 2021

Chapter 1.1: Finite Automata
5-tuple representation

We can describe a finite automaton 𝑀1 formally with a 5-tuple
by writing 𝑀1 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) where:

• 𝑄 is the set of all states in the automaton

• Σ is the (finite) set of inputs readable by the automaton,
called the alphabet

• 𝛿 ∶ 𝑄×Σ → 𝑄 is the transition function, which takes
the two arguments of the current state (in 𝑄) and the
next input (in Σ), which together are in 𝑄 × Σ, and
returns the next state (in 𝑄)

• 𝑞0 is the start state (𝑞0 ∈ 𝑄)

• 𝐹 ⊆ 𝑄 is the set of accept states; should the finite
automata reach the end of its input string, the output is
accept, otherwise it is reject. These states are sometimes
called “final states”.

Input strings and languages

To use a finite automaton, we give it a string of inputs
𝑖1, 𝑖2, 𝑖3, … of length ℓ where each 𝑖𝑛 ∈ Σ ∀𝑛 ∈ [ℓ] ⊆ ℕ. In
other words, we give the finite automaton a string of inputs,
each of which is in the set of readable inputs Σ.

There are certain strings which finite automata may accept
out of those given to it. The set of all such strings, which
result in the accept signal, is called 𝐴. The set of strings ac-
cepted by finite automaton 𝑀 is called the language of 𝑀 ,
denoted 𝐿(𝑀) = 𝐴. As 𝐴 is a language and not a string, we
say that 𝑀 recognizes 𝐴 (instead of 𝑀 accepts 𝐴).

The empty language is denoted ∅, and the empty string is
denoted 𝜀. If a machine accepts no strings, then it recognizes
the language ∅.

Factoid

Every automaton 𝑀 accepts exactly one language,
𝐿(𝑀).

Each language 𝐴 can be written in set notation (as each lan-
guage is a set of strings) as follows:

𝐴 = {𝑤|𝑃 (𝑤)},

where 𝑃(𝑤) is some property of 𝑤, e.g. “𝑤 contains at least
one 1 and an even number of 0s follow from the last 1”.

State diagram representation

Small finite automata can also be represented informally us-
ing a state diagram, which is easier to grasp intuitively. An
example, 𝑀1, follows:

𝑞1 𝑞2 𝑞3

0
1

1
0

0,1

This diagram, while cumbersome to draw using tikz in LATEX,
is easier to visualize and can easily be transformed into the 5-
tuple representation given earlier. This finite automaton 𝑀1
is defined as

𝑀1 = (
𝑄 = {𝑞1, 𝑞2, 𝑞3},
Σ = {0, 1},
𝛿 = (defined below),
𝑞0 = 𝑞1,
𝐹 = {𝑞2}

),

where 𝛿 ∶ 𝑄 × Σ → 𝑄 is defined as follows:

0 1
𝑞1 𝑞1 𝑞2
𝑞2 𝑞3 𝑞2
𝑞3 𝑞2 𝑞2

Aside: NOT required course material for CSCI 320

This table is probably the best way to display the tran-
sition function. Those familiar with Markov chains
(which can also be represented with state diagrams)
might recall a transition matrix with probabilities; if
the inputs can be probalistically determined, a transi-
tion matrix could likely be made that would represent
𝛿. Consider the case in which a 0 had a 60% chance of
appearing as the next letter of a string, and a 1 had
a 40% chance of appearing. Then, we might represent
the above automata as follows in Markov chain syntax:

⎡⎢
⎣

0.6 0.4 0
0 0.4 0.6
0 1 0

⎤⎥
⎦

Note that the diagram in question has a closed com-
municating class {𝑞2, 𝑞3} and is thus not irreducible.
We could calculate the stationary distributions of this
Markov chain using this information, but as it is not
very relevant, we will omit it.

Determining a finite automaton’s acceptance
criteria

Queens College 1 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 9, 2021

In order to figure out what strings a finite automaton accepts
or rejects, it is generally a good idea to create some short
strings from the alphabet Σ and see how the automaton pro-
cesses them. Going through this process for 𝑀1 above will
show you that 𝐿(𝑀1) = {𝑤|𝑃(𝑤)}, where 𝑃(𝑤) is the same
as the example property given previously.

However, this guess-and-check method is only really usable for
small finite automata. With larger automata, or those which
are defined formally rather than informally with a state dia-
gram, it can be useful to think about the exact criteria for
acceptance mathematically.

We say that finite automaton 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) accepts
a string 𝑤 = 𝑤1, 𝑤2, 𝑤3, ⋯ , 𝑤𝑛 if and only if there exists a
sequence of states 𝑟0, 𝑟1, 𝑟2, ⋯ , 𝑟𝑛 ∈ 𝑄 which satisfies the fol-
lowing three conditions:

• 𝑟0 = 𝑞0

• 𝛿(𝑟𝑖, 𝑤𝑖+1) = 𝑟𝑖+1 for 𝑖 ∈ {0, 1, ⋯ , 𝑛 − 1}
• 𝑟𝑛 ∈ 𝐹

In other words: we say 𝑀 accepts 𝑤 if and only if there is
a sequence of states that begins with the starting state, uses
the transition function thereafter to transition between states,
and ends in an accept state. With this, we say that 𝑀 recog-
nizes language 𝐴 if 𝐴 = {𝑤|𝑀 accepts 𝑤}.

Factoid

A language is called a regular language if some finite
automaton recognizes it.

Designing finite automata

The suggested way to design a finite automaton around a lan-
guage that you want it to recognize is to envision yourself as
the automaton itself and think about what actions you would
have to take in order to accept strings from that language and
it alone. For example, consider the finite automaton 𝑀 with
alphabet Σ = {0, 1} and language 𝐿(𝑀) = {𝑤|𝑃(𝑤)}, and
𝑃(𝑤) is the proposition that 𝑤 contains an even number of
1s. Then, you (as the automaton) should be able to deter-
mine using your state alone whether, while reading the input
string, you have read an even or odd number of 1s at any
given point. As such, it would make sense to have states for
an even number and an odd number of 1s. Then, as you start
with zero 1s with the empty string 𝜀, you should start at the
“even” state, and thereafter change states back and forth if
and only if the next input in the string is a 1. We might draw
this out as follows:

𝑞even 𝑞odd

0

1

0

1

When trying to accept only those strings which contain a
certain substring, it is key to assign states to each possible
substring of the given substring. Consider, as in the textbook
example, the substring 001, for some finite automaton with
alphabet Σ = {0, 1}. In our automaton, we would need to
assign states to account for the possible states of having read
(consecutively) no symbols of the pattern, one 0, two 0s, and
the entire substring 001. We might assign these states the
names 𝑞, 𝑞0, 𝑞00, and 𝑞001.

When we are at 𝑞 (having read no symbols in the substring), a
1 is meaningless to us (insofar as it does not allow us to make
any progress along the substring); as such, we should simply
stay put at 𝑞. If, however, we receive as our next input a 0,
we should proceed to 𝑞0; then, if we receive a 1 we should re-
turn to 𝑞 as we have created an incomplete substring. Should
we receive another 0, we should proceed to 𝑞00. At this state
comes the interesting conclusion that we are in the equivalent
of a Markov chain’s closed communicating class; that is, we
will never go back to the previous states 𝑞 and 𝑞0. This is
because an input of 0 will result in our remaining at the 00
portion of the substring, and an input of 1 will result in our
going to 𝑞001, after which we know that we have found the
required substring. At this last state, we will simply stay put
regardless of the next input, as we know that we have found
the substring for which we were looking. This last state is
also the accept state.

This might be difficult to understand when just reading, so a
diagram is included below for convenience’s sake. Note that
it might be useful to draw out such diagrams when thinking
about nontrivial automata such as the one described above.

𝑞 𝑞0 𝑞00 𝑞001

1
0

1

0

0

1

0,1

Regular operations

We define regular operations as the three different opera-
tions on languages, which are as follows:

• Union: 𝐴 ∪ 𝐵 = {𝑥|𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}
• Concatenation: 𝐴 ∘ 𝐵 = {𝑥𝑦|𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}
• Star: 𝐴∗ = {𝑥1𝑥2𝑥3 … 𝑥𝑘|𝑘 ≥ 0, 𝑥𝑖 ∈ 𝐴 ∀𝑖}

The first of these operations is familiar – the union opera-
tion (∪) is essentially the same as the one for sets. The other
two, however, are new: the concatenation operation (∘) might
seem similar to the “and” (∧) operator seen in propositional
logic, but in reality is different as we are now working with
strings rather than propositions. It is more similar to the con-
catenation of strings in most programming languages, e.g. A
+ B, which entails putting the characters in the first string A
before those in B. The major difference lies in the fact that we

Queens College 2 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 9, 2021

are here concerned with all possible outputs in which (to con-
tinue with our analogy) characters from string A come before
characters from string B. An example from the textbook fol-
lows, in which 𝐴 and 𝐵 are sets of strings rather than strings
themselves:

Consider sets 𝐴 and 𝐵 having contents {good, bad} and
{boy, girl} respectively. Then:

𝐴 ∪ 𝐵 = {good, bad, boy, girl}
𝐴 ∘ 𝐵 = {goodboy, goodgirl, badboy, badgirl}

Back to our definitions, the star operation as defined above
is unique among the regular operations in that it refers to
only one language (and is thus a unary operator rather than
a binary one). This operation is similar (but not identical)
to the power set operation 𝒫 on sets, which returns the
set of all subsets of a given set. For example, 𝒫({1, 2}) =
{∅, {1}, {2}, {1, 2}}, where ∅ (sometimes also written {}) is
the empty set (the set containing zero elements). The star (∗)
operator is similar in that it contains the “regular language-
equivalent” of the empty set, which is the empty string 𝜀, and
also contains the individual elements in the language as well as
collections of them; however, it differs in that the elements of a
star operation are not sets themselves but rather strings, and
are thus not prevented from containing duplicate elements
within themselves, or permutations of already-existing strings
in the set. To illustrate this, the above example from the text-
book is continued:
𝐴∗ = {𝜀, good, bad, goodgood,

goodbad, badgood, badbad, goodgoodgood,
goodgoodbad, goodbadgood, goodbadbad, … }

Note that while 𝐴∗ is an infinite set, 𝐴 ∪ 𝐵 and 𝐴 ∘ 𝐵 are
finite.

Now we move onto the notion of closure. We say that a
collection of objects is closed under an operation if applying
that operation to members of the collection returns an object
still in the collection. This is different from the notion of the
closure of a set described in topology, in which a set contains
its limit points, and is rather more similar to the notion of
closure described in the group theory of abstract algebra.

We use the above-described notion of closure to describe the
behaviour of a regular expression under the various regular
operations – namely, we have the following Factoid:

Factoid

The class of regular languages is closed under both the
union (∪) and concatenation (∘) operations.

The proof for these follows.

First, we want to prove that the class of regular languages is
closed under the ∪ operation – that is, the union of two reg-
ular languages is itself a regular language. Consider regular

languages 𝐴1 and 𝐴2, and their union 𝐴1 ∪𝐴2. We know that
some finite automatons recognize 𝐴1 and 𝐴2, and we want to
prove that some finite automaton recognizes 𝐴1 ∪𝐴2. In other
words, for machines 𝑀1 and 𝑀2 associated with 𝐴1 and 𝐴2
respectively, we want the machine 𝑀 associated with 𝐴1 ∪𝐴2
to accept the same inputs as both of 𝐴1 and 𝐴2.

The way we can do this is by considering every possible or-
dered pair of states, one from 𝑀1 and one from 𝑀2. To this
end, we want to take the Cartesian product 𝑄𝑀1

×𝑄𝑀2
of the

sets of states 𝑄𝑀1
and 𝑄𝑀2

, whose size will be (as we learned
in lecture) |𝑄𝑀1

| ⋅ |𝑄𝑀2
|. Then, we have a state in 𝑀 for ev-

ery single one of these possible pairs, accounting for both 𝑀1
and 𝑀2 at the same time. The automaton 𝑀 will transition
to the relevant pairs as dictated by some combination of the
transition functions 𝛿𝑀1

and 𝛿𝑀2
, and will have accept states

when either of the states 𝑀1 or 𝑀2 in the ordered pair are
an accept state.

More formally, we prove the above as follows (from the text-
book):

Let 𝑀1 recognize 𝐴1, where 𝑀1 = (𝑄1, Σ, 𝛿1, 𝑞1, 𝐹1) and 𝑀2
recognize 𝐴2, where 𝑀2 = (𝑄2, Σ, 𝛿2, 𝑞2, 𝐹2). We will prove
the above by construction.

Construct 𝑀 to recognize 𝐴1∪𝐴2, where 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹).
• 𝑄 = {(𝑟1, 𝑟2)|𝑟1 ∈ 𝑄1 ∧ 𝑟2 ∈ 𝑄2}. This set is the

Cartesian product of sets 𝑄1 and 𝑄2 as outlined above,
written 𝑄1 × 𝑄2.

• Σ, the alphabet, is the same as in 𝑀1 and 𝑀2. We
assume for simplicity that 𝑀1 and 𝑀2 have the same
alphabet. The theorem remains true even for different
alphabets, for which we would modify Σ to be Σ1 ∪ Σ2.

• 𝛿, the transition function, is defined formally as follows.
For each (𝑟1, 𝑟2) ∈ 𝑄 and each 𝑎 ∈ Σ, let

𝛿((𝑟1, 𝑟2), 𝑎) = (𝛿1(𝑟1, 𝑎), 𝛿2(𝑟2, 𝑎)).

By combining the transition functions in this manner,
we get the next state for each of 𝑀1 and 𝑀2 as an or-
dered pair, which is (by definition) in 𝑀 ’s state space
𝑄 and therefore valid.

• 𝑞0 is the pair of inital states of 𝑀1 and 𝑀2, (𝑞1, 𝑞2).
• 𝐹 is the set of pairs in which either member is an accept

state of 𝑀1 or 𝑀2. We can write it more formally as

𝐹 = {(𝑟1, 𝑟2)|𝑟1 ∈ 𝐹1 ∨ 𝑟2 ∈ 𝐹2},

or alternatively as

𝐹 = (𝐹1 × 𝑄2) ∪ (𝐹2 × 𝑄1).

Note that it is NOT the same as 𝐹 = 𝐹1 × 𝐹2, which
would mean that 𝑀 would only accept an input string
if both of the states in the pair were accept states. This
would be the case if we wanted the intersection (∩)

Queens College 3 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 9, 2021

rather than the union (∪), and actually serves as a con-
venient corollary that the class of regular languages is
also closed under intersection.

To prove that this is necessarily a correct construction, we
might proceed to use mathematical induction. It is omitted
here, as it is omitted in the textbook, for brevity. (Also, it
shouldn’t come up on any exams.)

Now that we have proven that the class of regular languages is

closed under union, we want to prove that it is closed under
concatenation. Consider regular languages 𝐴1 and 𝐴2, and
their concatenation 𝐴1 ∘ 𝐴2. The issue here is that we need
to construct some automaton 𝑀 that accepts inputs broken
into two pieces, in which 𝑀1 accepts the first piece and 𝑀2
accepts the second piece. In order to deal with this we need
something called nondeterminism, which will be covered in
the second unit of Chapter 1.

Chapter 1.2: Nondeterminism
Nondeterministic finite automata

So far we’ve been working with deterministic finite automata,
or DFAs. Now we’ll look at nondeterministic finite automata,
or NFAs. The major difference between DFAs and NFAs is
that NFAs don’t have a deterministic outcome based on a sin-
gle traversal of states. Rather than having a transition func-
tion which explicitly defines which single state will be moved
to given a current state and an input, as in DFAs, NFAs can
have multiple possible states that are reached as a result of a
given input. As such, the criteria for acceptance is the reach-
ing of any accept state by the end of the evaluation of the
string by any of the possible paths taken by the automaton.

Consider the following diagram of an NFA:

𝑞1 𝑞2 𝑞3 𝑞4

0,1

1 0,𝜀 1

0,1

Note that there are two different paths that the automaton
can take from 𝑞1 given an input of 1: it can stay at 𝑞1, or
it can move to 𝑞2. This generates two different paths – one
which considers the rest of the input as though the current
state is 𝑞1 and one which considers the rest of the input as
though the current state is 𝑞2. These paths will traverse the
rest of the NFA similarly.

Also, note the lack of a path from 𝑞3 given an input of 0, and
the lack of a path from 𝑞2 given an input of 1. If either of
these inputs without a path are encountered by the NFA while
at the given states, the path “dies” and is rejected. If all the
paths generated from an input are either rejected (or “killed”)
or fail to reach an accept state by the time the input string
is finished processing, then, similarly to a DFA, the NFA will
reject the input string. In fact:

Factoid

Every DFA is an NFA. NFAs are a more generalized
version of DFAs, which may have additional features.

One of these additional features hasn’t been mentioned yet,
which is the 𝜀 above the arrow between 𝑞2 and 𝑞3. This 𝜀,

which refers to the empty string as has been reiterated many
times, means that one of the paths that can be taken by the
NFA upon reaching 𝑞2 is to immediately head to 𝑞3, without
the need for an input character. As such, inputs may travel
from 𝑞1 directly to 𝑞3 when one input has been read in this
NFA, despite the fact that only one “step” has been taken.

When conceptualizing the way an NFA processes input strings,
it can be useful to think of the processing of the input string
as creating forking processes whenever multiple paths can be
taken. Ideas of parallel computing, threads, and concurrency
can be used as analogies here. Another useful analogy is that
of an (upside-down) tree, in which each intersection of mul-
tiple paths given the current input creates multiple branches.
If any of the “leaves” of the tree at the end of its evaluation
of the input string are at an accept state, the entire tree is
greenlighted and the input string is accepted; otherwise it is
rejected. If none of the leaves are at an accept state, then,
similarly to the DFA, the tree (input string) is rejected.

Plugging in various strings from the usual alphabet Σ = {0,1}
will lead the reader to find that the above example of an NFA
will accept any input string that contains either 101 or 11 as
a substring. The check for this is left as an exercise to those
reading the notes.

Another more intuitive example is as follows. Consider an
NFA which accepts only those strings that contain a 1 as the
third-to-last input on an input string. This could be repre-
sented as follows:

𝑞1 𝑞2 𝑞3 𝑞4

0,1

1 0,1 0,1

Every NFA can be converted into a corresponding DFA, but it
isn’t always easy – in fact, it’s frequently very difficult. The
smallest DFA for this intuitive example, for instance, has no
fewer than eight states, and is significantly more difficult to
comprehend at a glance than the equivalent NFA. (The depic-
tion of said DFA is omitted here – curious readers can check
the textbook.)

Another (slightly more complex) example follows. Consider
the following NFA:

Queens College 4 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 9, 2021

𝜀

0

0

𝜀 0

00

This NFA, which has the unary alphabet Σ = {0}, illustrates
the usefulness of the 𝜀 transition. In this case, the 𝜀s are able
to arbitarily split the NFA’s tree into two separate paths into
two closed communicating classes, which accept input strings
of zeroes of a length that is a multiple of either 2 or 3.

Formal definition of nondeterministic finite
automata

Now that we’ve gotten a good idea of what NFAs are, it’s time
to define them formally. The definition of NFAs is exceedingly
similar to that of DFAs, which should make sense given both
that it is possible to convert between them and that NFAs are
a generalization of DFAs.

The definition is as follows:

A nondeterministic finite automaton is, like a DFA, defined
by a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹). Each of these have their usual
meanings, except for the transition function 𝛿. In a NFA, the
transition function is (instead of a function 𝛿 ∶ 𝑄 × Σ → 𝑄) a
function 𝛿 ∶ 𝑄 × Σ𝜀 → 𝒫(𝑄). We define Σ𝜀 to be the union of
the alphabet Σ and the empty string 𝜀, and use our working
definition of 𝒫(𝑄) as the power set of the set of states 𝑄. In
other words, 𝛿 represents a transition from the ordered pair of
the current state and the next input letter or 𝜀 to some sub-
set of the set of states. Each state-letter combination might
yield a different state, or the same state-letter combination
might yield multiple states, and all of these possiblities are
accounted for by the power set.

We redraw our first NFA here:

𝑞1 𝑞2 𝑞3 𝑞4

0,1

1 0,𝜀 1

0,1

This NFA, 𝑁1, has the following 5-tuple representation:

𝑁1 = (
𝑄 = {𝑞1, 𝑞2, 𝑞3, 𝑞4},
Σ = {0,1},
𝛿 = (defined below),
𝑞0 = 𝑞1,
𝐹 = {𝑞4}

),

where 𝛿 ∶ 𝑄 × Σ → 𝒫(𝑄) is defined as follows:

0 1 𝜀
𝑞1 {𝑞1} {𝑞1, 𝑞2} ∅
𝑞2 {𝑞3} ∅ {𝑞3}
𝑞3 ∅ {𝑞4} ∅
𝑞4 {𝑞4} {𝑞4} ∅

Computation for an NFA is defined similarly to that for a DFA.
For NFA 𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹), and string 𝑤 over alphabet Σ,
we say 𝑁 accepts 𝑤 if we can write 𝑤 as 𝑦1𝑦2 ⋯ 𝑦𝑚, where each
𝑦1 is in Σ𝜀 and a sequence of states 𝑟 = 𝑟0, 𝑟1, … , 𝑟𝑚 exists in
𝑄 where 𝑟0 = 𝑞0 the initial state of 𝑁 , 𝑟𝑖+1 ∈ 𝛿(𝑟𝑖, 𝑦𝑖+1) ∀𝑖 ∈
{0, 1, … , 𝑚 − 1}, and 𝑟𝑚 ∈ 𝐹 . In other words, 𝑟 starts at the
starting state, ends in an accept state, and follows the tran-
sition function 𝛿 in between those two states. The difference
here between DFAs and this NFA definition is that 𝑟𝑖+1 is in
the set 𝛿(𝑟𝑖, 𝑦𝑖+1) rather than being equal to the next transi-
tion, as the return value of a transition function in an NFA is
always a set in 𝒫(𝑄).

Equivalence of NFAs and DFAs

Queens College 5 Professor Bojana Obrenić

