
Ben Rosenberg CSCI 320: Theory of Computation June 19, 2021

Exam 2 Review Sheet
Regular operations and Regular expressions

Regular operations are the three operations that are ap-
plied to sets (for our purposes, those sets are languages Σ).

They are as follows:
operation symbol what it does

union ∪ usual union set op.
concatenation ∘, ⋅, or none glues strings together

Kleene star ∗ zero or more of elt.

Let the number of elements in sets 𝐴 and 𝐵 be |𝐴| and |𝐵|.
Then:

• The number of elements in |𝐴∪𝐵| is |𝐴|+|𝐵|−|𝐴∩𝐵| ≤
|𝐴| + |𝐵|

• The number of elements in |𝐴 ∘ 𝐵| is at most |𝐴| × |𝐵|
(because concatenations are basically ordered pairs) but
can be as low as 0 if either 𝐴 or 𝐵 is ∅

• The number of elements in |𝐴∗| is either finite, in which
case it is either 0 (if 𝐴 = ∅) or 1 (if 𝐴 = {𝜆}), or infinite,
in which case it is ℵ0

Regular expressions are strings made out of parentheses,
the letters in Σ, and the symbols ∪, ∘, ∗, 𝜆, ∅. They are
made to represent a regular language, which is obtained
by finitely many applications of regular expressions to the
sets ∅, {𝜆}, and {𝑖} for all 𝑖 ∈ Σ. This boils down to the
fact that regular expressions are a shorthand for representing
regular languages – that is, languages that are defined by the
three regular operations on some alphabet.

Examples (over Σ = {𝑎, 𝑏, 𝑐}):
• Even length: ((𝑎 ∪ 𝑏 ∪ 𝑐)(𝑎 ∪ 𝑏 ∪ 𝑐))∗

• Odd length: ((𝑎 ∪ 𝑏 ∪ 𝑐)(𝑎 ∪ 𝑏 ∪ 𝑐))∗(𝑎 ∪ 𝑏 ∪ 𝑐)
• Length ≤ 2: (𝑎 ∪ 𝑏 ∪ 𝑐 ∪ 𝜆)(𝑎 ∪ 𝑏 ∪ 𝑐 ∪ 𝜆)
• Contains abcb or bca: (𝑎 ∪ 𝑏 ∪ 𝑐)∗(𝑎𝑏𝑐𝑏 ∪ 𝑏𝑐𝑎)(𝑎 ∪ 𝑏 ∪ 𝑐)∗

• Contains odd number of a’s: ((𝑏 ∪ 𝑐)∗𝑎(𝑏 ∪ 𝑐)∗𝑎(𝑏 ∪
𝑐)∗)∗𝑎(𝑏 ∪ 𝑐)∗

• Contains as a substring both abb and bca: omitted for
brevity (accounting for all ordering cases and overlaps
makes it really long)

Theorem (proven in NFA part by Kleene’s Thm. equivalence):
If there is a regex for some language, there is a regex for its
complement.

Context-free grammars and languages

A context free grammar is a structure defined as 𝐺 =
(Σ, 𝑉 , 𝑃 , 𝑆) where Σ is the usual kind of alphabet (set of
letters), 𝑉 is the set of variables (also called an alphabet of
variables) used in the grammar (which does not overlap with
Σ: so, 𝑉 ∩ Σ = ∅), 𝑆 is the designated start symbol (note

that 𝑆 ∈ 𝑉 always, so 𝑉 ≠ ∅), and 𝑃 is the set of rules (“pro-
ductions”) for going from one variable to another variable or
string. 𝑃 is a subset of 𝑉 × (Σ ∪ 𝑉)∗ because we’re going
from 𝑉 to some number of elements of the intersection of Σ
and 𝑉 . (Note further that 𝑃 is finite despite the fact that
|(Σ ∪ 𝑉)∗| = ℵ0.)

We say that if (𝐴, 𝑤) ∈ 𝑃 , 𝐴 is a variable in 𝑉 , and 𝑤 is some
“word” made of variables and letters and is in (Σ ∪ 𝑉)∗. We
can also write (𝐴, 𝑤) ∈ 𝑃 as 𝐴 → 𝑤, spoken “𝐴 derives 𝑤”.

If 𝐴 → 𝑤1, and 𝐴 → 𝑤2, 𝐴 → … etc., we can write
𝐴 → 𝑤1|𝑤2| … .

Example CFG (1):

• 𝐺 = (Σ, 𝑉 , 𝑃 , 𝑆)
• Σ = {𝑎, 𝑏, 𝑐}
• 𝑆 is the start state

• 𝑉 = {𝑆, 𝐴, 𝐵, 𝐷}
• 𝑃 ∶

– 𝑆 → 𝐴𝐵|𝐵𝐷
– 𝐴 → 𝑎𝐴|𝑐
– 𝐵 → 𝐵𝑏|𝑐𝑎
– 𝐷 → 𝑎𝑏𝐷|𝜆

The CFG operates as follows. Start with the start symbol 𝑆.
Then, proceed to the next step, of 𝐴𝐵 and 𝐵𝐷 (recall that
the pipe is the symbol for union and that the lack of space be-
tween, say, 𝐴𝐵 and 𝐵𝐷 is indicative of their concatenation).
We continue substituting into variables with every possibility
(with branching paths denoted by the union operators) until
we have created every string possible from the CFG.

More formally, we say that a variable 𝐸 ∈ 𝑉 derives a sen-
tence 𝑤 ∈ (Σ∪𝑉)∗ in one step if 𝐸 → 𝑤 is in 𝑃 . For example,
𝐵 derives the string 𝑐𝑎 in one step.

Then, inductively, we say that variable 𝐸 ∈ 𝑉 derives a sen-
tence 𝑥 ∈ (Σ ∪ 𝑉)∗ in 𝑛 + 1 steps if all of the following hold:

1. 𝑤 derives some 𝑦 ∈ (Σ ∪ 𝑉)∗ in 𝑛 steps,

2. 𝑦 is equal to some concatenation 𝑦1𝐹𝑦2, where 𝑦1 and
𝑦2 are strings in (Σ ∪ 𝑉)∗ and 𝐹 ∈ 𝑉 is a variable,

3. There is some rule 𝐹 → 𝑦0 in 𝑃 for some string
𝑦0 ∈ (Σ ∪ 𝑉)∗, and

4. The concatenation 𝑦1𝑦0𝑦2 is equal to 𝑥.
We can make context-free grammars for regular expressions
using a couple constructs, which are associated with the reg-
ular operators of union, concatenation, and the Kleene star.
We have already seen the union operation in the form of the
pipe (|). The concatenation operation is simply denoted by

Queens College 1 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 19, 2021

putting two variables or letters or both next to each other.
Finally, the Kleene star is described using the following ex-
amples:

Example: Turn the regular expression 𝑎∗𝑐 into a CFG.

We can do this with the following (single) rule: 𝑆 → 𝑎𝑆|𝑐.
This prepends zero or more 𝑎’s to the beginning of the string,
and adds a 𝑐 to the end when it is done so that the string
always ends in 𝑐. We can see that 𝐴 from example (1) is the
same as this expression.

Similarly, from example (1), we can see that 𝐵 → 𝑐𝑎𝑏∗ be-
cause we are appending zero or more 𝑏’s to the end of string
𝐵, which must begin with 𝑐𝑎. 𝐷 must go to (𝑎𝑏)∗ because we
are prepending 𝑎𝑏 zero or more times to 𝐷, which must be
ended by 𝜆, the empty string.

Not every CFG needs to define a regular language. For ex-
ample, the language 𝐿 = {𝑎𝑛𝑏𝑛|𝑛 ≥ 0} cannot be defined by
a regular expression. Two attempts might be (𝑎𝑏)∗ and 𝑎∗𝑏∗,
but in the first, we have 𝑎𝑏𝑎𝑏 contained and in the second we
have 𝑎𝑎𝑏 contained, so neither work. The CFG for 𝐿 could
be the usual (with Σ = {𝑎, 𝑏}) with 𝑃 ∶ 𝑆 → 𝜆|𝑎𝑆𝑏. In this
grammar we prepend an 𝑎 and append a 𝑏 the same number
of times (𝑛), which is in line with what we want from 𝐿.

A more complex example of this type might be the language
𝐿 = {𝑎𝑛𝑐𝑐𝑏2𝑛|𝑛 ≥ 0}. We say that this telescopes as there
are equivalent exponents at either end. In this example our
rule is 𝑆 → 𝑎𝑆𝑏𝑏|𝑐𝑐, as we prepend one 𝑎 for each two 𝑏’s we
append, and have two 𝑐’s in the middle.

While not all languages generated by CFGs need to be regular,
we can use the regular operations of union, concatenation, and
the Kleene star on CFGs 𝐺1 and/or 𝐺2 to create a new CFG
𝐺 (the set of languages generated by context-free grammars
is closed under the regular operations).

For the union operator 𝐿(𝐺1) ∪ 𝐿(𝐺2), we create a new start
state 𝑆 separate from any of the states in 𝐺1 or 𝐺2 and add
the new rule to 𝑃 that 𝑆 → 𝑆1|𝑆2.

For the concatenation operator 𝐿(𝐺1)𝐿(𝐺2), we create a new
start state 𝑆 separate from any of the states in 𝐺1 or 𝐺2 and
add the new rule to 𝑃 that 𝑆 → 𝑆1𝑆2.

For the Kleene star operator 𝐿(𝐺1)∗, we create a new start
state 𝑆 separate from any of the states in 𝐺1 and add the new
rule to 𝑃 that 𝑆 → 𝜆|𝑆𝑆|𝑆1. This rule tells us that 𝑆 can
make zero or more copies of itself.

Next, we want to try turning regular expressions 𝑒 into CFGs
(we know that we can’t necessarily do the opposite from the
above telescoping examples). We define our algorithm to do
this recursively, with base cases of the letters 𝑖 ∀𝑖 ∈ Σ, the
empty string 𝜆, and the empty language ∅, which are the zero-
operator regular expressions. The CFG rules for these are as

follows:
regex rule

𝑖 ∀𝑖 ∈ Σ 𝑆 → 𝑖
𝜆 𝑆 → 𝜆
∅ no rules

What we then do is split the regular expression 𝑒 up into CFG
variables by operator precedence. We consider the example
𝑒 = 𝑎𝑏∗(𝑎 ∪ 𝑏) ∪ (𝑏𝑐 ∪ 𝑎)∗:

𝑎 𝑏∗⏟
𝐷

(𝑎 ∪ 𝑏)⏟
𝐸⏟⏟⏟⏟⏟

𝐴

∪ (𝑏𝑐 ∪ 𝑎⏟
𝐹

)∗

⏟
𝐵

This results in the following rules:

• 𝑆 → 𝐴|𝐵
• 𝐴 → 𝑎𝐷𝐸
• 𝐷 → 𝑏𝐷|𝜆
• 𝐸 → 𝑎|𝑏
• 𝐵 → 𝜆|𝐵𝐵|𝐹
• 𝐹 → 𝑏𝑐|𝑎

Deterministic finite automata

We define a deterministic finite automaton or DFA as a
structure 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) where these elements are de-
fined as follows:

thing what it is
Σ alphabet as usual
𝑄 set of states, ≠ ∅
𝑞0 initial state ∈ 𝑄
𝐹 accept states ⊆ 𝑄
𝛿 transition fct (𝑄 × Σ) → 𝑄

We write that [𝑞, 𝑎, 𝑝] ∈ 𝛿 if there is a transition from 𝑞 to 𝑝
on the receipt of input 𝑎.
The configuration of a DFA is a state-string pair (𝑞, 𝑤) with
𝑞 ∈ 𝑄 and 𝑤 ∈ Σ∗. Here, 𝑞 is the current state and 𝑤 is the
portion of the input string that has yet to be processed. We
say that a DFA starts in the configuration (𝑞0, 𝑤0) where 𝑤0
is the entire string that is to be processed.

A configuration is terminal if it is of the form (𝑡, 𝜆) with 𝑡 ∈ 𝑄,
and is accepting if 𝑡 ∈ 𝐹 and otherwise rejecting.

We say that 𝐿(𝑀) is the set of exactly those strings that
DFA 𝑀 accepts (take 𝑀 from the initial configuration to an
accepting one).

We can write the transition function 𝛿 in two different ways.
The first is a list of transitions, in a table like so:

𝑎 𝑏
𝑞 𝑝 𝑝
𝑝 𝑞 𝑞

Queens College 2 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 19, 2021

But we can also write this with a state transition diagram
as follows:

𝑞 𝑝
a,b

a,b

In the above diagram, the initial state is 𝑞, as can be seen by
the arrow entering 𝑞 from the margin. There is one accepting
state, 𝑝, which can be seen by the double circle around 𝑝. We
can see that on either an 𝑎 or 𝑏, the automaton changes state.
Since 𝑝 (the accepting state) is reached by any odd number
of transitions of the automaton, we can see that this automa-
ton accepts only those strings which have an odd number of
characters (since it is a DFA, we know implicitly that this
automaton’s alphabet is Σ = {𝑎, 𝑏}).
Recall the previously-stated (but not proven) theorem that
there is always a regular expression for the complement of any
given regular expression. We begin to lay the groundwork for
our proof of this theorem with the fact that the complement
of the language defined by a DFA is exceedingly easy to make
a DFA for: all we do is change 𝐹 to be 𝑄\𝐹 – that is, we
invert the accept states. (**Note that this is not the same for
NFAs!**)
The intersection of two DFAs is a little harder to implement,
but it too can be written as a single DFA. We say that if
𝐿1 is accepted by the usual 𝑀1, and 𝐿2 is accepted by the
usual 𝑀2, then their intersection 𝐿1 ∩ 𝐿2 is accepted by
𝑀 = ((𝑄1 × 𝑄2), Σ, 𝛿, 𝑞0 = (𝑞1, 𝑞2), (𝐹1 × 𝐹2)). Here, 𝛿 con-
tains tuple [(𝑝, 𝑞), 𝑎, (𝑠, 𝑡)] exactly when both [𝑝, 𝑎, 𝑠] ∈ 𝛿1
and [𝑞, 𝑎, 𝑡] ∈ 𝛿2. In essence, we have composite states, each
of which is a pair of states, so that we simulate both machines
at the same time.

We can also simulate modular arithmetic with DFAs. Consider
the case in which we wanted to accept only those strings with
length divisible by 3. Then, we might have the following:

zero

one

two

a,b,c

a,b,c

a,b,c

This automaton moves circularly with each transition, and
only accepts when the number of transitions is zero mod 3.
As such, it only accepts strings with length divisible by 3.

A more complex example is as follows. Construct a DFA to
accept the set of strings for which

2𝑛𝑎 + 𝑛𝑏 − 𝑛𝑐 + 3 = 𝛼,

where 𝑛𝑎, 𝑛𝑏, and 𝑛𝑐 refer to the number of 𝑎’s, 𝑏’s, and 𝑐’s
respectively, and 𝛼 mod 5 is odd.

We can do this as follows:

0

1

2

3

start

4

b

a

c

b

a

c

b

a

c

b

a c
b

a

c

Here, the accept states are 1 and 3 because, mod 5, they are
the odd remainders. Then, the initial state is 3, because we
explicitly add 3 to the end of the expression for 𝛼. Finally,
the transitions come in the form of arithmetic mod 5 scaled
by the coefficients of 𝑛𝑎, 𝑛𝑏, and 𝑛𝑐: we can see that each
input of 𝑎 corresponds to a increase in 2, each input of 𝑏 cor-
responds to an increase of 1, and each input of 𝑐 corresponds
to a decrease of 1.

We can, however, do more than arithmetic with DFAs: we
can also make DFAs that correspond to the containing of a
substring, or having a certain start or end, etcetera. Really,
we can do anything with DFAs that we can with regexes and
vice versa (we will prove this later with Kleene’s Thm.). For
example, here is a DFA that accepts strings that contain 𝑏𝑏:

b bb

a,c

b

a,c

b

a,b,c

However, longer substrings require ever more complex DFAs.
The DFA for the set of exactly those strings that contain
𝑏𝑎𝑏𝑏𝑎𝑏𝑏𝑏𝑎, for instance, is significantly more difficult to draw,
requiring one node for each letter in the string and then an
extra one for the start, as well as 10 different transitions back,
not all of which are intuitive due to the requirement that we
accept overlaps in substring-finding attempts. The idea of a
non-deterministic finite automaton, or NFA, will help us make
this substring graph much easier to draw.

Non-deterministic finite automata

We define a non-deterministic finite automaton or NFA
as a structure 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) (much like a DFA) where:

thing what it is
Σ same as DFAs: alphabet as usual
𝑄 same as DFAs: set of states, ≠ ∅
𝑞0 same as DFAs: initial state ∈ 𝑄
𝐹 same as DFAs: accept states ⊆ 𝑄
𝛿 transition fct 𝛿 ∶ 𝑄 × (Σ ∪ {𝜆}) → 𝒫(𝑄)

As can be seen above, the only difference lies in the transition

Queens College 3 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 19, 2021

function 𝛿: instead of going from a state-symbol pair to a sin-
gle state, we can actually go from a state-symbol pair OR a
state-𝜆 pair to any number of states in 𝑄. In fact, since 𝒫(𝑄)
includes ∅, we can even have our transition “die”, in which
case it does not continue with evaluation. To conceptualize
the idea that the automaton is at a set of states rather than a
single state, we might say that it clones itself, or is operating
in parallel universes, or is extending roots like a tree towards
the water that is an accept state.

The aforementioned state-𝜆 pair refers to the 𝜆-transition:
that is, the ability of a NFA to move without receiving input.
Such transitions are marked on the state transition diagram
with 𝜆 appropriately.

It should also be noted that the non-deterministic part of the
NFA plays a big role in its operation. States in NFAs don’t
need to have a transition on every input in Σ∪𝜆 – they might
only have one, or even none at all.

An NFA accepts an input string when any one (we can use the
existential quantifier ∃ here) of its “clones” reaches an accept
state at end of the input string 𝑤0.

Back to the substring example from the end of the DFA por-
tion, we can quite easily make such a diagram with NFAs:

1 2 3 4 5 6 7 8 9

a,b

b a b b a b b b a

a,b

It’s a little hard to see, but state (9) is the accept state for
the above NFA.

Kleene’s theorem

Kleene’s theorem states that the classes of languages de-
fined by regexes, DFAs, and NFAs are equivalent, and are
called regular languages.

The following diagram illustrates the relationship the three
have:

NFA

regex

DFA

alg.
alg.

alg.

special case

“alg.” here refers to the existence of an algorithm. Note that
DFAs are a special case of NFAs, with no 𝜆=transitions and
determinism required.

There are three major algorithms insofar as these conversions
are concerned, as can be seen by the above diagram’s arrows,

and one extra algorithm included below for the application
of regular operations to DFAs and NFAs. We begin with
this “extra” algorithm.

For the purposes of the below three regular operation demon-
strations, consider finite state automata 𝑀1 and 𝑀2 as de-
fined by the state transition diagrams below:

𝑀1 = 𝑀1

𝑀2 = 𝑀2

The important takeaway here is that 𝑀1 and 𝑀2 have zero
in-degree initial states and zero out-degree accepting states,
which means that they don’t have edges going into the initial
state (except the one from space), and that they don’t have
any edges coming out of accepting states. It is important
that you keep this in mind, as trying to use the below rules
to apply regular operations to automata may result in faulty
automata if the input automata are not of this form. (If they
aren’t in this form, then we can put them into this form by
adding artificial start and end nodes with 𝜆-transitions.)

Union of 𝑀1 ∪ 𝑀2 of 𝑀1 and 𝑀2:

𝑀 =

𝑀1𝜆 𝜆

𝑀2
𝜆 𝜆

Concatenation 𝑀1𝑀2 of 𝑀1 and 𝑀2:

𝑀1 𝑀2
𝜆

Kleene star 𝑀∗
1 of 𝑀1:

𝑀1

𝜆

𝜆

Now, onto the next algorithm, which is the conversion of
regular expressions into DFAs and NFAs.

We define the algorithm for conversion of regexes to finite
state automata recursively, starting from the zero-operator
regular expressions and then building around them.

Queens College 4 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 19, 2021

Recall that the zero-operator regular expressions are the let-
ters in Σ, the empty string 𝜆, and ∅. They become the follow-
ing finite state automata:

𝑎 ⟹ 𝑎

𝜆 ⟹ 𝜆

∅ ⟹

From these base cases we can construct finite automata for
all regular expressions. An example follows.

Example: Three different ways to write (𝑎 ∪ 𝑏)∗

a,b

𝜆 a,b
𝜆

𝜆

𝜆

𝜆

𝜆

𝜆

𝜆

𝜆

a

b

𝜆

𝜆

𝜆

The next algorithm is for the conversion between NFAs
and DFAs. The main idea here is that the states in the cre-
ated DFA are each a set of states from the NFA (as would be
implied by the transition function’s codomain of 𝒫(𝑄)). So,
we first need to make some kind of table for the 𝛿 for the NFA
with the states as the sets.

Then, we need to understand the notion of 𝜆-closure. The
𝜆-closure of a state 𝑥 in an NFA, denoted 𝒞(𝑥), is the set of
states that are reachable by zero transitions (that is, the read-
ing of the empty string 𝜆) from the state. This becomes a re-
cursive definition when we realize that multiple 𝜆-transitions
can be connected to each other.

The reason 𝜆-closure is important is that it is used in con-
junction with the 𝛿 enumeration, used to ensure that we have
actually enumerated all of the possible states that are transi-
tioned to.

We can write the DFA transition function as follows, for state
𝑥 and input 𝑎 as

𝛿NFA(𝑥, 𝑎) = 𝒞(⋃
𝑝∈𝑥

𝛿DFA(𝑝, 𝑎)).

The last algorithm is for the conversion from finite automa-
ton to regular expression. To begin, we need to under-
stand the notion of a generalized expression graph (GEG).
We define a GEG as a graph (not a finite automaton) with
arcs labeled by regular expressions. (The definition of a graph
is omitted here for brevity, and it is assumed that it has been
covered in prerequisite material.) In terms of our previous
knowledge, an NFA is a special case of a GEG, where the
labels on the arc are either a single symbol or 𝜆.
The main idea of this algorithm is to transform the original
automaton, through a sequence of equivalent GEGs, until a
trivial one is obtained, from which the resulting regular ex-
pression will be easily visible. This trivial GEG will be of the
following form:

𝑒

Here, 𝑒 is our desired regular expression. We want to keep
modifying the original NFA until we can get something of the
above form, meaning that, for an NFA with 𝑘 nodes, we’ll
need to eliminate 𝑘 − 2 nodes.

Before starting this algorithm, we need to make the original
automaton compliant: that is, its initial and accept state need
to have zero in- and out-degree respectively.

After we have made the automaton compliant, we need to
make an adjacency matrix-like table, with each node on the
rows and columns, and the transitions between them in the
cells of the matrix. An example follows:

1 2 3 4𝜆

𝑎
𝑏

𝑏

𝑎

𝜆

We can see that the above NFA is a compliant automaton
accepting strings with an odd number of 𝑏’s. This automa-
ton can be represented by the following adjacency matrix-like
table:

1 2 3 4
1 ∅ 𝜆 ∅ ∅
2 ∅ 𝑎 𝑏 ∅
3 ∅ 𝑏 𝑎 𝜆
4 ∅ ∅ ∅ ∅

We iteratively rewrite this table, until we are left with two
nodes. Here is the first iteration:

Queens College 5 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 19, 2021

1 3 4
1 ∅ 𝑎∗𝑏 ∅
3 ∅ 𝑎 ∪ 𝑏𝑎∗𝑏 𝜆
4 ∅ ∅ ∅

We are essentially reversing the regular operations from a pre-
vious algorithm in this section.

The final iteration:

1 4
1 ∅ 𝑎∗𝑏(𝑎 ∪ 𝑏𝑎∗𝑏)∗

4 ∅ ∅

So, we can see that the regular expression for an odd number
of 𝑏’s is 𝑎∗𝑏(𝑎 ∪ 𝑏𝑎∗𝑏)∗.

Exam on Monday. Good luck!

Queens College 6 Professor Bojana Obrenić

