
Lecture 9

Ben Rosenberg

June 21, 2021

Definition: A context‐free grammar is regular if every rule satisfies one of the following forms:

1. 𝐴 → 𝑎 (single terminal)
2. 𝐴 → 𝜆 (empty string)
3. 𝐴 → 𝑎𝐵 (terminal followed by variable)

where𝐴, 𝐵 are variables and 𝑎 is a terminal.
𝐺1 = (𝑉 , Σ, 𝑃 , 𝑆)
𝑉 = {𝑆, 𝐴}
𝑃 :
• 𝑆 → 𝐴𝑎𝐴𝑎𝐴
• 𝐴 → 𝜆|𝐴𝐴|𝑏𝑐

This is the language with exactly two 𝑎’s. It is not regular because of the fact that there are multiple terminals
in both rules; namely, the rule𝐴 → 𝐴𝐴 is a blatant offender.

We can write a regular expression for𝐺1 as follows:

(𝑏 ∪ 𝑐)∗𝑎(𝑏 ∪ 𝑐)∗𝑎(𝑏 ∪ 𝑐)∗

Now let’s write a regular grammar for this regex.

𝐺2 = (𝑉 , Σ, 𝑃 , 𝑆)
𝑉 = {𝑆, 𝑁, 𝑍}
𝑃 :
• 𝑆 → 𝑎𝑁|𝑏𝑆|𝑐𝑆
• 𝑁 → 𝑎𝑍|𝑏𝑁|𝑐𝑁
• 𝑍 → 𝑏𝑍|𝑐𝑍|𝜆

This leads us to our algorithm, which is that regular grammars have an algorithm for conversion to finite
automata and back.

The language generated by a regular grammar is always regular.

Algorithm 1 : Algorithm to convert between regular grammars and finite automata, where the finite automa‐
ton must satisfy:

• initial state with zero in‐degree
• single final state with zero out‐degree
• no 𝜆‐transitions except into the final state

1

Ben Rosenberg CSCI 320: Theory of Computation June 21, 2021

Figure 1: Noncompliant automaton (above) and its compliant version

To put the automaton into this form, we can simply make it deterministic, fix the final states, and make𝜆‐arcs
into the final states from all the other final states.

The conversion mapping is as follows:

grammar automaton
𝐺 = (𝑉 , Σ, 𝑃 , 𝑆) 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

𝑉 = 𝑄\{𝑍} 𝐹 = {𝑍}, 𝑍 ∉ 𝑉 , 𝑄 = 𝑉 ∪ {𝑍}
𝑆 = 𝑞0 𝑞0 = 𝑆

𝑃 𝛿

Figure 2: Example conversion

Problem 1: Σ = {𝑎, 𝑏, 𝑐}; strings that contain exactly one 𝑏 or exactly one 𝑐.
Σ = {𝑎, 𝑏, 𝑐}
𝐺 = (𝑉 , Σ, 𝑃 , 𝑆)
𝑉 = {𝑆, }
𝑃 :
• 𝑆 → 𝑎𝑆|𝑏𝐵|𝑐𝐾
• 𝐵 → 𝑎𝐵|𝑐𝐵|𝜆
• 𝐾 → 𝑎𝐾|𝑏𝐾|𝜆

We will have four states: one for each of the variables (𝑆, 𝐵, 𝐾), and one for the final state (𝑍).
Problem 2: Strings that contain exactly 2 𝑐’s; going from automaton to grammar
𝐺 = {𝑉 , Σ, 𝑃 , 𝑆}
𝑉 = {𝑆, 𝐴, 𝐵} (the states, without 𝑍)
𝑃 :
• 𝑆 → 𝑎𝑆|𝑏𝑆|𝑐𝐴
• 𝐴 → 𝑎𝐴|𝑏𝐴|𝑐𝐵
• 𝐵 → 𝑎𝐵|𝑏𝐵|𝜆

Queens College 2 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 21, 2021

Figure 3: Automaton from grammar conversion

Figure 4: Strings that contain exactly 2 𝑐’s

This algorithm is separate from Kleene’s Theorem, but is of course useful nonetheless.

Pumping Lemma for Regular Languages
The idea now is to prove that a language is not regular.

The pumping lemma study plan follows:

• study
• read and understand, and remember
• prove
• apply
• practice

Theorem (pumping lemma):

Let 𝐿 be a regular language. Then:

(∃𝑘 > 0)(∀𝑤 ∈ 𝐿)(|𝑤| > 𝑘 ⟹
((∃𝑥, 𝑦, 𝑧 ∈ Σ∗)(𝑤 = 𝑥𝑦𝑧∧

|𝑥𝑦| ≤ 𝑘∧
|𝑦| > 0∧

((∀𝑖 ≥ 0)(𝑥𝑦𝑖𝑧 ∈ 𝐿)))))

The “pumping” part here is the same string concatenated to itself multiple (𝑖) times.
The pumping lemma says that all regular languages “pump”: that is, every good string that is long enough will
pump. By long enough, we mean that if a language is regular, there will be a positive constant such that every
good string that is at least that long will pump – inside the string, but within the first 𝑘 symbols, there must
exist what is called a pumping window (which is nonempty). The “pumping” is repeating itself in place any
number of times.

Queens College 3 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 21, 2021

Proof: Let 𝐿 be regular. Then, let𝑀 be a DFA that accepts 𝐿, and let𝑀 have 𝑘 states.
Let 𝑤 ∈ 𝐿 be a string that belongs to 𝐿 and let |𝑤| ≥ 𝑘. (We call 𝑤 a “good, long string”.)

Observe𝑀 as it processes and accepts𝑤:

Figure 5: Diagram of pumping automaton

We can see that we have listed 𝑘 +1 states (because there are 𝑘 symbols), but the machine only has 𝑘 states.
Therefore, by the pigeonhole principle, we know that on the list, at least one state appears at least twice.

We will call this repeated state 𝑝. Let’s call the substring before the first appearance of 𝑝 by the name 𝑥; the
substring between the two appearances of 𝑝, 𝑦; and the substring after the second appearance of 𝑝, 𝑧. Note
that 𝑥 and 𝑧 can be empty, but 𝑦 cannot as is needs to appear between two distinct occurrences of 𝑝.
Now, we need to write configurations of𝑀 . We begin with (𝑞0, 𝑥𝑦𝑧) (or, alternatively, (𝑞0, 𝑤)). Then, we
go to (𝑝, 𝑦𝑧):

(𝑞0, 𝑥𝑦𝑧) → (𝑝, 𝑦𝑧) → (𝑝, 𝑧) → accepts

Example (exponent of 𝑖 is 2):
• (𝑞0, 𝑥𝑦𝑦𝑧) → (𝑝, 𝑦𝑦𝑧)
• (𝑝, 𝑦𝑦𝑧) → (𝑝, 𝑦𝑧)
• (𝑝, 𝑦𝑧) → (𝑝, 𝑧)

Queens College 4 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 21, 2021

• (𝑝, 𝑧) → accept

This pattern should be clear.

Another example:

• (𝑞0, 𝑥𝑧) → (𝑝, 𝑧) → accept (exponent of 𝑖 is 0)
Note that if we can’t find a good long string𝑤 as indicated by the pumping lemma, then the regular expression
must be finite.

Recall: PL (pumping lemma): if 𝐿 is regular, then 𝐿 pumps. Note that this is an implication, not an iff –
meaning, that languages could still pump and not be regular. However, if we find a language that does not
pump, then it must not be regular.

To prove that 𝐿 is not regular, we prove that it cannot pump (it violates the pumping lemma). In other words,
we want to show that the negation of the PL holds for 𝐿.
We can write the negation of the pumping lemma as follows:

(∀𝑘 > 0)(∃𝑤 ∈ 𝐿)(|𝑤| > 𝑘∧
((∀𝑥, 𝑦, 𝑧 ∈ Σ∗)(𝑤 = 𝑥𝑦𝑧∧

|𝑥𝑦| ≤ 𝑘∧
|𝑦| > 0 ⟹

((∃𝑖 ≥ 0)(𝑥𝑦𝑖𝑧 ∉ 𝐿)))))

If the above holds for some language 𝐿 then 𝐿 is not regular.
To prove that a language 𝐿 is not regular:
1. Recognize a property that must be satisfied by all elements of 𝐿;
2. Assume tht 𝐿 is regular, name a positive constant of the Pumpiung Lemma;
3. Select an element 𝑤 ∈ 𝐿 that is long enough to pump;
4. For every admissible pumping decomposition𝑤 = 𝑥𝑦𝑧

• Select 𝑖 such that 𝑥𝑦𝑖𝑧 ∉ 𝐿
Example: 𝐿2 = {𝑎𝑛𝑏𝑛|𝑛 ≥ 0}
Assume for the sake of contradiction that 𝐿2 is regular. Let 𝑘 > 0 be the constant of the PL for 𝐿.
Select 𝑛 > 𝑘, and𝑤 = 𝑎𝑛𝑏𝑛. The property we select is that the number of 𝑎’s is equal to the number of 𝑏’s.
Where is the pumping window? That is, where are the admissible pumping decompositions?

Figure 6: Pumping window diagram

So, 𝑦 = 𝑎𝑗|𝑗 > 0. Now, we pump up once to obtain 𝑤1 = 𝑎𝑛+𝑗𝑏𝑛. But since 𝑛 + 𝑗 ≠ 𝑛, 𝑤𝑖 ∉ 𝐿 and so
𝐿 is not regular.

Queens College 5 Professor Bojana Obrenić

	Pumping Lemma for Regular Languages

