Lecture 8

Ben Rosenberg

June 17, 2021

Non-deterministic finite automata

Definition: A non-deterministic finite automaton is a structure

M = <Q7E757QO7F>

where () is a finite set of states, X is an alphabet, g, € (@ is the initial state, ' C () is the set of final
(accepting) states, and the transition function ¢ is a partial function

5:Qx (SUN) = P(Q).

The initial configuration is (g, w,) for a given input w, € ¥*. From a configuration (¢, w), M may transition
to a next configuration (p, x) if:
w = ax where z € ¥ U{\}

and
[q,a,p] €9.

M accepts a given input wy, if there exists a sequence of transition that takes M from the initial configuration
to an accepting configuration: (t,)\) forsomet € F.

Important distinctions between NFAs and DFAs:

¢ \-transition: the automaton can move without receiving input
e { is a partial function: it is possible that § does not have an output for a given (state, input) pair
e J maps to P(Q), the power set of () - the machine may be at multiple states at the same time

-0 <q7a> = {p17p27 7pn},a S XU {)\}

Note that in the above definition, we say a next configuration rather than the next configuration. A machine
can have multiple configurations at the same time. We use the existential quantifier here.

Figure 1: Configuration tree: difference between DFAs and NFAs

Example: Set of strings that end with bba.
“How to fail”: The complement theorem from DFAs cannot be applied to NFAs.

Example NFA: Set of exactly those strings that contain substring babbabbba.

Ben Rosenberg CSCI 320: Theory of Computation

June 17, 2021

for A
Q\\O\C—‘
Q o b e ‘)
G I Rl SN CY

Figure 2: NFA for strings that end with bba

Figure 3: NFA for set of exactly those strings that contain substring babbabbba

Kleene's Theorem

Theorem: The classes of languages defined by:

e regular expressions
e deterministic finite automata
e non-deterministic finite automata

are equivalent. These languages are called regular languages.

@% L""\/‘ '_uo« e
NG a
o hﬂtew

=~

(

Lep

o

1=
: : v S s o-
s‘,eu&ko cane ﬁi} %\)\:?d{ew\

LLElae T s g s

Figure 4: Relationship between NFAs, DFAs, and regular expressions

Algorithms

Algorithm @: Regular operations on finite state automata
Input: finite state automata M, and M, which satisfy the following form:

e initial state with zero in-degree
¢ single final state with zero out-degree

and accept languages L and L, respectively:

Output: finite state automaton M that accepts language:
L=L,UL,
L=1L,-L,

L=1L"

In order to get the initial and final states correct for an NFA, simply add a \-transitions from a new initial state

with zero in-degree and from accept states to a new accept state with zero-out degree.

Queens College 2 Professor Bojana Obrenié

Ben Rosenberg CSCI 320: Theory of Computation June 17, 2021

Case1: Ly U L,

Take the two original machines, and add the following (red) transitions and states.

A

LA g — 7:\,:\

e (=)

- X))

2 Nt i N/
e C S \ =) ",

Figure 5: Union

Case2: Lo L,

Simply add a A-transition from the accept state of one to the initial state of another.
o< Cr e —~m—)
Figure 6: Concatenation

Case 3: L]

Add \-transitions from the initial state to the accept state, and from the accept state to the initial state.

N

Figure 7: Kleene star

And so, the class of finite automata is closed under these operations.

Algorithm @: Conversion of regular expressions to finite state automata
Input: regular expression e

Output: finite state automaton M that accepts the language defined by e
Construction: Recursion on number of operators in e.

Zero operators:

Recursively, if e has n + 1 operators, then we have 3 cases:

e c=¢e;Uey
e c=e¢e106
ce=(e)
where e, e, have n or fewer operators.

We apply the previous algorithm:

(aUbc*)(b(aUb)*c)U (bcUa)*

“How to fail": Be wary of assuming that automata are equivalent intuitively when they may not be.

Another example: Given (a*b)*, we know that a ¢ L.

Queens College 3 Professor Bojana Obrenié

Ben Rosenberg CSCI 320: Theory of Computation June 17, 2021

A o> .®
P — -G (S))

Figure 8: Zero-operator regular expressions

@lmw%\ 0%
D
Q
O A@i@)

Figure 9: Three different ways to write (a U b)*

Figure 11: Example of incorrect NFA for (a U b)*(c U g)* (should be A-transition between parts)

Queens College 4 Professor Bojana Obrenié

Ben Rosenberg CSCI 320: Theory of Computation June 17, 2021

{/{C—B N CP

Figure 12: Example of incorrect NFA for (a*b)* (it accepts a ¢ L)

Algorithm @: Conversion of NFAs to DFAs
Input: non-deterministic finite state automaton M that accepts the language L
Output: deterministic finite automaton M/, that accepts the language L

AR Y.
.

“":} = -4;1_‘_’_: r:_
"“ "Jhlc—le(ﬁ]
cawn be
= N\ (r2E, D':T AROE.

Figure 13: Example of algorithm #3

For every string w € X%, we know exactly the set of strings where M can be after w. There is nothing
nondeterministic.

Idea: States of the new deterministic automaton M/ are sets of states of the old deterministic automaton
M, such that for every string w € X%, M isin a state X C () after processing w if and only if M can be
in any one of the elements of X after processing w, but in no other state.

Construction:
o My = (Qq,%,61,q;, F)

Note: our construction will construct only reachable states.

a b c A
Al 0 {F} O {B.E}
Bl 0 {B} o {({D}"
E| {D} {B} 0O
F|{F,D} O {B} 0
D 0 | o C7

Figure 14: A suitable representation of the old § for the NFA

Definition: The A-closure of a state X € () is defined recursively as follows:

Base case: X € C(x) (X always belongs to its A-closure)

Queens College 5 Professor Bojana Obrenié

Ben Rosenberg CSCI 320: Theory of Computation June 17, 2021

Recursive case: If y € C(x) and [y, A, 2] € d then z € C(z).

C(x) is the set of states reachable from x using just A-arcs.

Figure 15: Table of C(x)’s

We say that the new initial state is the A-closure of the old initial state: thatis, ¢; = C(q;)-
New transition function d;: we say that

0y (z,a) =] d(p, a)

pEx

Note that
u_)=couel),

which we will use in determining

6,(x,a) = e(L d(p, a)).

pEX

il il b C
{A,B,D,E}Y| {D} {B.D,F} ©
{D} (6] (6] 6]
{(B,D,F} |{D,F} {B,D} {B,D}
(0]) 0] (0]
{B,D} 0 {B, D} 0
{D,F} |{D,F} 0 {B,D}

Figure 16: New transition function (of dubious correctness)

Final (accept) states: any state that contains at least one of the old final states

Algorithm @: Conversion of finite automaton to regular expression

Input: finite automaton M with zero in-degree and single final state with zero out-degree
Output: regular expression e

Def: A generalized expression graph (GEG) is not a finite automaton - its arcs are labelled by regular expres-
sions.

Idea: transform the original automaton through a sequence of equivalent generalized expression graphs until
a trivial one is obtained, which will be read off the result.

The NFA is a special case of a generalized expression graph, where the arc label is either a single symbol or

A

Queens College 6 Professor Bojana Obrenié

Ben Rosenberg CSCI 320: Theory of Computation June 17, 2021

Figure 17: Example G.E.G.

- i & L@
We want to keep modifying our NFA until we get something of the form .

We need to arrive at 2 nodes, which means that we will need to eliminate some number of nodes. For an
automaton with & nodes, we will need to eliminate k£ — 2 nodes.

Example: Odd number of b's
TAa >
SRC
- S
>

Figure 18: Odd number of b's

We need to make this into a compliant automaton.

/\\ = I./)
L e NN
Wy@) &—(
N o N

Figure 19: Compliant automaton with odd number of b’s

Then, we make a table that is kind of an adjacency matrix. For the above automaton, it looks like:
For every pair of nodes (p, ¢), we need a new matrix entry.

Back to the previous example: which nodes do we need to eliminate? We should eliminate 2 and 3, as they
are in the middle of our good nodes 1 and 4. We start by trying to eliminate node 2.

So, we make a table as before, but without node 2:
Note that if any of the expressions are (), then the arc does not change.

And so, the regular expression for an odd number of b's is a*b(a U ba*b)*.

Queens College 7 Professor Bojana Obrenié

Queens College

Ben Rosenberg

CSCI 320: Theory of Computation

2
E
v

a (=)
@ | o
o | o

Figure 20: Adjacency matrix-like construct

V€
(\ S ,—&/oz] -
e ""“‘“&(» <)

-7

T

o ./
7.

Figure 21: Before x is eliminated

@
-
{u QﬂlQO < 5

Figure 22: After x is eliminated

f
3~ | N
\ \ - ! -
- — | —
—f X |
1 (f='s | L
1 .t/ =
S— = i - - I
ot — [ex S
| { by 3\ |)
. L = o >
i’ = A
] |) 1
/\ — — \
A | - ' {
L i
S

Figure 23: Table without node #2

| A | A

1,7r\\—¢")f‘
Lol @ |@bladkdyy
| \
N . P e
| & | &
,._/4'7' 77/ N \

Figure 24: Table without node #3

Professor Bojana Obreni¢

June 17, 2021

	Non-deterministic finite automata
	Kleene’s Theorem
	Algorithms

