
Lecture 8

Ben Rosenberg

June 17, 2021

Non‐deterministic finite automata
Definition: A non‐deterministic finite automaton is a structure

𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

where 𝑄 is a finite set of states, Σ is an alphabet, 𝑞0 ∈ 𝑄 is the initial state, 𝐹 ⊆ 𝑄 is the set of final
(accepting) states, and the transition function 𝛿 is a partial function

𝛿 ∶ 𝑄 × (Σ ∪ {𝜆}) → 𝒫(𝑄).

The initial configuration is (𝑞0, 𝑤0) for a given input𝑤0 ∈ Σ∗. From a configuration (𝑞, 𝑤),𝑀 may transition
to a next configuration (𝑝, 𝑥) if:

𝑤 = 𝑎𝑥 where 𝑥 ∈ Σ ∪ {𝜆}
and

[𝑞, 𝑎, 𝑝] ∈ 𝛿.
𝑀 accepts a given input𝑤0 if there exists a sequence of transition that takes𝑀 from the initial configuration
to an accepting configuration: (𝑡, 𝜆) for some 𝑡 ∈ 𝐹 .
Important distinctions between NFAs and DFAs:

• 𝜆‐transition: the automaton can move without receiving input
• 𝛿 is a partial function: it is possible that 𝛿 does not have an output for a given (state, input) pair
• 𝛿 maps to𝒫(𝑄), the power set of𝑄 – the machine may be at multiple states at the same time

– 𝛿 ∶ (𝑞, 𝑎) ↦ {𝑝1, 𝑝2, … , 𝑝𝑛}, 𝑎 ∈ Σ ∪ {𝜆}
Note that in the above definition, we say a next configuration rather than the next configuration. A machine
can have multiple configurations at the same time. We use the existential quantifier here.

Figure 1: Configuration tree: difference between DFAs and NFAs

Example: Set of strings that end with bba.

“How to fail”: The complement theorem from DFAs cannot be applied to NFAs.

Example NFA: Set of exactly those strings that contain substring babbabbba.

1

Ben Rosenberg CSCI 320: Theory of Computation June 17, 2021

Figure 2: NFA for strings that end with bba

Figure 3: NFA for set of exactly those strings that contain substring babbabbba

Kleene’s Theorem
Theorem: The classes of languages defined by:

• regular expressions
• deterministic finite automata
• non‐deterministic finite automata

are equivalent. These languages are called regular languages.

Figure 4: Relationship between NFAs, DFAs, and regular expressions

Algorithms

Algorithm 1 : Regular operations on finite state automata

Input: finite state automata𝑀1 and𝑀2, which satisfy the following form:

• initial state with zero in‐degree
• single final state with zero out‐degree

and accept languages 𝐿1 and 𝐿2 respectively:

Output: finite state automaton𝑀 that accepts language:

𝐿 = 𝐿1 ∪ 𝐿2

𝐿 = 𝐿1 ⋅ 𝐿2
𝐿 = 𝐿∗

In order to get the initial and final states correct for an NFA, simply add a 𝜆‐transitions from a new initial state
with zero in‐degree and from accept states to a new accept state with zero‐out degree.

Queens College 2 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 17, 2021

Case 1: 𝐿1 ∪ 𝐿2
Take the two original machines, and add the following (red) transitions and states.

Figure 5: Union

Case 2: 𝐿1 ∘ 𝐿2
Simply add a 𝜆‐transition from the accept state of one to the initial state of another.

Figure 6: Concatenation

Case 3: 𝐿∗
1

Add 𝜆‐transitions from the initial state to the accept state, and from the accept state to the initial state.

Figure 7: Kleene star

And so, the class of finite automata is closed under these operations.

Algorithm 2 : Conversion of regular expressions to finite state automata

Input: regular expression 𝑒
Output: finite state automaton𝑀 that accepts the language defined by 𝑒
Construction: Recursion on number of operators in 𝑒.
Zero operators:

Recursively, if 𝑒 has 𝑛 + 1 operators, then we have 3 cases:
• 𝑒 = 𝑒1 ∪ 𝑒2
• 𝑒 = 𝑒1 ∘ 𝑒2
• 𝑒 = (𝑒1)∗

where 𝑒1, 𝑒2 have 𝑛 or fewer operators.
We apply the previous algorithm:

(𝑎 ∪ 𝑏𝑐∗)(𝑏(𝑎 ∪ 𝑏)∗𝑐) ∪ (𝑏𝑐 ∪ 𝑎)∗

“How to fail”: Be wary of assuming that automata are equivalent intuitively when they may not be.

Another example: Given (𝑎∗𝑏)∗, we know that 𝑎 ∉ 𝐿.

Queens College 3 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 17, 2021

Figure 8: Zero‐operator regular expressions

Figure 9: Three different ways to write (𝑎 ∪ 𝑏)∗

Figure 10: NFA for (𝑎 ∪ 𝑏𝑐∗)(𝑏(𝑎 ∪ 𝑏)∗𝑐) ∪ (𝑏𝑐 ∪ 𝑎)∗

Figure 11: Example of incorrect NFA for (𝑎 ∪ 𝑏)∗(𝑐 ∪ 𝑔)∗ (should be 𝜆‐transition between parts)

Queens College 4 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 17, 2021

Figure 12: Example of incorrect NFA for (𝑎∗𝑏)∗ (it accepts 𝑎 ∉ 𝐿)

Algorithm 3 : Conversion of NFAs to DFAs

Input: non‐deterministic finite state automaton𝑀 that accepts the language 𝐿
Output: deterministic finite automaton𝑀1 that accepts the language 𝐿

Figure 13: Example of algorithm #3

For every string 𝑤 ∈ Σ∗, we know exactly the set of strings where 𝑀 can be after 𝑤. There is nothing
nondeterministic.

Idea: States of the new deterministic automaton 𝑀 are sets of states of the old deterministic automaton
𝑀 , such that for every string 𝑤 ∈ Σ∗,𝑀1 is in a state𝑋 ⊆ 𝑄 after processing 𝑤 if and only if𝑀 can be
in any one of the elements of𝑋 after processing 𝑤, but in no other state.
Construction:

• 𝑀1 = (𝑄1, Σ, 𝛿1, 𝑞1, 𝐹1)
• 𝑄1 = 𝒫(𝑄)

Note: our construction will construct only reachable states.

Figure 14: A suitable representation of the old 𝛿 for the NFA

Definition: The 𝜆‐closure of a state𝑋 ∈ 𝑄 is defined recursively as follows:

Base case: 𝑋 ∈ 𝒞(𝑥) (𝑋 always belongs to its 𝜆‐closure)

Queens College 5 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 17, 2021

Recursive case: If 𝑦 ∈ 𝒞(𝑥) and [𝑦, 𝜆, 𝑧] ∈ 𝛿 then 𝑧 ∈ 𝒞(𝑥).
𝒞(𝑥) is the set of states reachable from 𝑥 using just 𝜆‐arcs.

Figure 15: Table of 𝒞(𝑥)’s

We say that the new initial state is the 𝜆‐closure of the old initial state: that is, 𝑞1 = 𝒞(𝑞0).
New transition function 𝛿1: we say that

𝛿1(𝑥, 𝑎) = ⋃
𝑝∈𝑥

𝛿(𝑝, 𝑎)

Note that
𝒞(__ ∪ __) = 𝒞(__) ∪ 𝒞(__),

which we will use in determining

𝛿1(𝑥, 𝑎) = 𝒞(⋃
𝑝∈𝑥

𝛿(𝑝, 𝑎)).

Figure 16: New transition function (of dubious correctness)

Final (accept) states: any state that contains at least one of the old final states

Algorithm 4 : Conversion of finite automaton to regular expression

Input: finite automaton𝑀 with zero in‐degree and single final state with zero out‐degree

Output: regular expression 𝑒
Def: A generalized expression graph (GEG) is not a finite automaton – its arcs are labelled by regular expres‐
sions.

Idea: transform the original automaton through a sequence of equivalent generalized expression graphs until
a trivial one is obtained, which will be read off the result.

The NFA is a special case of a generalized expression graph, where the arc label is either a single symbol or
𝜆.

Queens College 6 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 17, 2021

Figure 17: Example G.E.G.

We want to keep modifying our NFA until we get something of the form .

We need to arrive at 2 nodes, which means that we will need to eliminate some number of nodes. For an
automaton with 𝑘 nodes, we will need to eliminate 𝑘 − 2 nodes.
Example: Odd number of b’s

Figure 18: Odd number of b’s

We need to make this into a compliant automaton.

Figure 19: Compliant automaton with odd number of b’s

Then, we make a table that is kind of an adjacency matrix. For the above automaton, it looks like:

For every pair of nodes (𝑝, 𝑞), we need a new matrix entry.
Back to the previous example: which nodes do we need to eliminate? We should eliminate 2 and 3, as they
are in the middle of our good nodes 1 and 4. We start by trying to eliminate node 2.

So, we make a table as before, but without node 2:

Note that if any of the expressions are ∅, then the arc does not change.
And so, the regular expression for an odd number of b’s is 𝑎∗𝑏(𝑎 ∪ 𝑏𝑎∗𝑏)∗.

Queens College 7 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 17, 2021

Figure 20: Adjacency matrix‐like construct

Figure 21: Before 𝑥 is eliminated

Figure 22: After 𝑥 is eliminated

Figure 23: Table without node #2

Figure 24: Table without node #3

Queens College 8 Professor Bojana Obrenić

	Non-deterministic finite automata
	Kleene’s Theorem
	Algorithms

