
Lecture 7

Ben Rosenberg

June 16, 2021

Review: CFGs
1 ConsiderΣ = {a,b,c}, and a grammar for the set of strings whose length is divisible by 3. (Lengths are
of the form 3𝑛 for some natural number 𝑛.)
Regular expression:

((a ∪ b ∪ c)(a ∪ b ∪ c)(a ∪ b ∪ c))
∗

Grammar:

• 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆)
• 𝑉 = {𝑆, 𝑍}
• 𝑃 ∶ 𝑆 → 𝜆|𝑆𝑆|𝑍𝑍𝑍 ; 𝑍 → a|b|c

Consider now grammar𝐺1 = (𝑉 , Σ, 𝑃 , 𝑆).
𝑉 :
• 𝑆 ⟹ ∶ strings with length= 3𝑛.
• 𝑁 ⟹ ∶ strings with length= 3𝑛 + 1
• 𝑇 ⟹ ∶ strings with length= 3𝑛 + 2
• 𝑍 ⟹ ∶ any single letter

𝑃 :
• 𝑆 → 𝜆|𝑍𝑇
• 𝑇 → 𝑍𝑁
• 𝑁 → 𝑍𝑆
• 𝑍 → a|b|c

This grammar is equivalent to the previous grammar𝐺, and while less intuitive, it has some advantages. For
instance, if we wanted to get strings of length 3𝑛 + 1, we would just make𝑁 the start symbol instead of 𝑆.

Finite state automata
A finite state machine has a box, that cannot be looked into. It has a dial, and a hand that moves on the dial,
with indicatory marks that may be labeled. We call this the state box.

We then have an input of a string, which is unbounded but finite. The input is an element of Σ∗. There is a
head on the tape that can only read the tape and move to the next symbol (to the right) after reading.

Initially, the state is some initial state 𝑞0, and the tape will be pointing at the leftmost symbol of the input. For
each symbol the machine reads, it looks at the symbol under the head, looks at the current state, consults its
own definition, and changes its state (after which the head progresses one symbol to the right).

1

Ben Rosenberg CSCI 320: Theory of Computation June 16, 2021

Figure 1: Illustration of analogy to finite state automaton

DFAs
Definition: A deterministic finite state automaton (DFA) is a structure𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹).
• We are familiar withΣ as the usually‐defined alphabet.
• 𝑄 is a finite set of states. It cannot be empty because it contains 𝑞0.
• 𝑞0 is a designated initial state. (𝑞0 ∈ 𝑄)
• 𝐹 is a subset of 𝑄, and is the set of designated final states (aka accept states). (𝐹 ⊆ 𝑄) 𝐹 may be
empty, because it is simply defined as a subset.

• 𝛿 is a total function (it is always defined, over the entire domain) called the transition function. We
define 𝛿 as 𝛿 ∶ (𝑄 × Σ) → 𝑄: for every pair (state, symbol), 𝛿 maps this pair to some state in𝑄.

Notation: If 𝛿(𝑞, a) = 𝑝, where 𝑞, 𝑝 ∈ 𝑄 and a ∈ Σ, then we write:

[𝑞, a, 𝑝] ∈ 𝛿,

which is read “in current state 𝑞, on symbol a, transition to next state 𝑝.”
Concept: The configuration (snapshot) of a computation is a snapshot of the history of computation that is
required and sufficient to continue.

The configuration of finite automaton𝑀 is a pair (𝑞, 𝑤) where 𝑞 ∈ 𝑄 and 𝑤 ∈ Σ∗. Here, 𝑞 is the current
state and 𝑤 is unprocessed input (meaning, under the head and to the right).

A DFA starts in the initial configuration, of (𝑞0, 𝑤0) for 𝑞0 ∈ 𝑄, 𝑤 ∈ Σ∗. Then, recursively from the current
configuration (𝑞, 𝑤), the next configuration (𝑝, 𝑥), 𝑝 ∈ 𝑄, 𝑥 ∈ Σ∗ is calculated as follows:

The configuration is terminal if it is of the form (𝑡, 𝜆), 𝑡 ∈ 𝑄.
It is accepting if 𝑡 ∈ 𝐹 , and rejecting if 𝑡 ∉ 𝐹 .
𝐿(𝑀), the set of strings defined by𝑀 is the set of exactly those strings that𝑀 accepts; that is, that take
𝑀 from the initial configuration to an accepting one.

Queens College 2 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 16, 2021

Figure 2: Illustration of the calculation of the next configuration

Example:

Notation 1 :

• 𝑀 = (𝑄, Σ, 𝛿, 𝑞, 𝐹)
• Σ = {a,b}
• 𝐺 = {𝑞, 𝑝}
• 𝐹 = {𝑝}
• 𝛿 ∶ ⋯

– [𝑞, a, 𝑝]
– [𝑞, b, 𝑝]
– [𝑝, a, 𝑞]
– [𝑝, b, 𝑞]

State transition diagrams

Notation 2 (state transition diagram):

A state transition diagram is a directed graph, with states as the nodes and transitions (the 𝛿 tuples) as the
edges. The initial state has a funnel into it and the accept state has a circle around it.

We can also write the transition function as a table:
a b

𝑞 𝑝 𝑝
𝑝 𝑞 𝑞

We can see that the above automaton accepts strings of odd length.

The question, when trying to determine how an automaton works, is “which strings take 𝑀 to this/these
(accept) state(s)?”

Theorem: Let 𝐿 be a language accepted by a deterministic finite automaton:
𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

In other words, 𝐿 = 𝐿(𝑀).
Then, its complement 𝐿 is accepted by:

𝑀1 = (𝑄, Σ, 𝛿, 𝑞0, (𝑄\𝐹)).

Queens College 3 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 16, 2021

Figure 3: State diagram for above‐given DFA,𝑀

Simply by inverting the accept and reject states we can achieve the previously difficult notion of complement.

Example: Divisibility by 3

We’ll need three states, to keep track of what remainder we have modulo 3.

Figure 4: State diagram for divisibility by 3

If we want the strings of length divisible by 3, we take 𝐹 = {𝑍}; if we want the even remainder, we take
𝐹 = {𝑍, 𝑇 }; if we want those not divisible, we take 𝐹 = {𝑁, 𝑇 }.
Example: Let Σ = {a,b,c}. What is the DFA that accepts exactly those strings that begin with substring
bbb?

Example: Contains substring bb.

For a string𝑤, define 𝑛𝑎 as the number of a’s in𝑤, define 𝑛𝑏 as the number of b’s in𝑤, and define 𝑛𝑐 as the
number of c’s in 𝑤.
For 𝑤 = cabacbacbbca we have 𝑛𝑎 = 3, 𝑛𝑏 = 4, 𝑛𝑐 = 5.

Queens College 4 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 16, 2021

Figure 5: State diagram for DFA accepting strings beginning with bbb

Figure 6: State diagram for DFA accepting strings containing bb

Queens College 5 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 16, 2021

Construct a DFA to accept the set of strings for which:

2𝑛𝑎 + 𝑛𝑏 − 𝑛𝑐 + 3 = 𝛼
gives an odd remainder after division by 5.

We will need 5 states, because there are 5 possible remainders.

Each b contributes 1 to 𝛼, each c subtracts one from 𝛼, each a contributes 2 to 𝛼. The initial state is 3 ,
because if we consider 𝜆 as an input, we have 𝑛𝑎 = 𝑛𝑏 = 𝑛𝑐 = 0 and then 𝛼 = 3. The final states will be
1 and 3 because they are the odd remainders.

Figure 7: State diagram for division of 𝛼 by 5 yielding an odd remainder
Theorem: Let 𝐿1 be a language accepted by a finite automaton:

𝑀1 = (𝑄1, Σ, 𝛿, 𝑞1, 𝐹1)

and let 𝐿2 be a language accepted by a finite automaton

𝑀2 = (𝑄2, Σ, 𝛿, 𝑞2, 𝐹2).

Then their intersection 𝐿1 ∩ 𝐿2 is accepted by:

𝑀 = ((𝑄1 × 𝑄2), Σ, 𝛿, (𝑞1, 𝑞2), (𝐹1 × 𝐹2))

where 𝛿 contains tuple [(𝑝, 𝑞), 𝑎, (𝑠, 𝑡)] exactly when
[𝑝, 𝑎, 𝑠] ∈ 𝛿1

[𝑞, 𝑎, 𝑡] ∈ 𝛿2

Queens College 6 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 16, 2021

Idea: Have a composite state, which is a pair of states, that simulates both machines.

Example: Σ = {a,b,c}, and we want an even number of b’s and an odd number of c’s.

We need to count the number of b’s, and the number of c’s, using the same mod‐2 arithmetic for both (as we
only care about parity). We’ll have 4 total states:

even b, even c odd b, even c
even b, odd c odd b, odd c

Somewhat trivially we can take care of a by having our outomaton stay in the same state.

A b will flip our state from even b to odd b or vice versa.

Figure 8: Composite state example

Example: Set of exactly those strings that end with bbb.

Idea: “Remember” last three symbols. If they are bbb, then accept; otherwise, reject.

Issue: There are 27 of them (3 ⋅ 3 ⋅ 3). There are also more states to reach this.
Example: Set of exactly those strings that contain babbabbba:

Figure 9: Set of exactly those strings that contain babbabbba

Tomorrow: NFAs (nondeterministic finite automatons)

Queens College 7 Professor Bojana Obrenić

	Review: CFGs
	Finite state automata
	DFAs
	State transition diagrams

