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Cardinality (cont.)
From last time: Wewanted to prove that the set of natural numbers was infinite. Recall that we needed some
subset 𝐸 ⊂ ℕ of the natural numbers, an injection 𝑓1 ∶ 𝐸 → ℕ, and an injection ℕ → 𝐸. By definition,
this will prove that the setℕ is infinite.
Let 𝐸 be the set of even natural numbers defined as 𝐸 = {𝑥 ∈ ℕ|(∃𝑦 ∈ ℕ)(𝑥 = 2𝑦)}. This is clearly a
subset ofℕ.
Recall our parking lot analogy, in which an injectionmeant a one‐to‐one mapping of inputs to outputs, “telling
the cars how to park.” For our first injection, the license places are even numbers, and the parking spots are
natural numbers. The easy way to do this for the first injection is with what is called the identity injection,
in which we tell each car to go to its own parking spot. This can be represented as 𝑓1 ∶ 𝑥 ↦ 𝑥. When, in
essence, we have an injection from a subset of a set to the set itself, the identity injection can be very useful.

Nowwe need to construct 𝑓2. We can’t use the same identity injection here, because there isn’t a designated
parking spot for cars with odd license plates. It looks like half of the cars cannot fit, because the parking spots
are only even. But we can actually map each car using 𝑓2 ∶ 𝑥 ↦ 2𝑥.
To prove that 𝑓2 is an injection:

𝑓2(𝑥) = 𝑓2(𝑦)
2𝑥 = 2𝑦 ( definition of 𝑓2)
𝑥 = 𝑦 ( arithmetic – cancel 2 because 2 ≠ 0)

So, we have proven that this injection is valid.

The intuition for what we have done in this second injection is simply stretching the number line out by a
factor of 2, so that each number inℕ is stretched out to reach the number two times itself.
The cardinality of𝐸 is the same as the cardinality ofℕ; we can simply rename the 0, 2, 4, etc. to 0, 1, 2, etc.
Notation: Cardinality ofℕ. We say that the cardinality ofℕ, |ℕ|, is equal to ℵ0.

Theorem: There are no infinite sets with cardinality less thanℵ0. (This is taken without proof.) In other words:
If |𝐴| < |ℕ|, then𝐴 is finite.
ℵ0 is the first (smallest) infinite cardinality.

Definition: A set is countable if its cardinality is not greater than ℵ0. Otherwise, it is uncountable. In other
words, a set is countable if it is either finite or has cardinality ℵ0.

The question is: are there sets that are uncountable? In other words – are there sets with cardinality> ℵ0?
The answer is yes. We are going to try to find a set that nobody can park.

Theorem: The union of countable sets is countable.
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Consider the set of natural numbers. ℕ is the disjoint union of𝐸 and𝐷, with𝐸 = {𝑥 ∈ ℕ|(∃𝑦 ∈ ℕ)(𝑥 =
2𝑦)} and𝐷 = {𝑥 ∈ ℕ|(∃𝑦 ∈ ℕ)(𝑥 = 2𝑦 + 1)}. We know that |𝐸| = ℵ0 and |𝐷| = ℵ0. (We can find
the second with the injection 𝑥 ↦ 2𝑥 + 1.) And |𝐸 ∪ 𝐷| = ℵ0, and𝐸 ∩𝐷 = ∅.
Say that: ‐ 𝑆0 = {𝑥 ∈ ℕ|(∃𝑦 ∈ ℕ)(𝑥 = 13 ⋅ +0)}, ‐ 𝑆1 = {𝑥 ∈ ℕ|(∃𝑦 ∈ ℕ)(𝑥 = 13 ⋅ +1)}, and so
on, until ‐ 𝑆12 = {𝑥 ∈ ℕ|(∃𝑦 ∈ ℕ)(𝑥 = 13 ⋅ +12)}.
There are thirteen possible remainders when a number is divided by 13, and each subset𝑆𝑖 ofℕ is an infinite
subset with cardinality equal toℕ. We can thus split the natural numbers into any such parts without making
their union into an uncountable set.

So, instead, let’s try taking the product of sets to approach uncountability. As with our previous visualization
of set product, draw out the coordinate plane withℕ on each of the axes. In order to make the points on the
grid created by this Cartesian product, we can use a method that we can call zig‐zagging (but which likely has
a better mathematical name). Start by sending 0, 0, and then proceed as shown in Figure 1.

Figure 1: Zig‐zagging across the coordinate plane

Gödel injection
Theorem: There exists an injection

𝒢 ∶
∞
⋃
𝑘=1

ℕ𝑘 → ℕ.

This injection is called the Gödel injection.

Recall by the definition of exponentiation that ℕ𝑘 = ℕ×ℕ× ℕ×⋯×ℕ⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘 times

. As such, elements of ℕ𝑘

contain 𝑘 different elements in their ordered tuple, and are 𝑘‐tuples.
This union,⋃∞

𝑘=1 ℕ𝑘, is the set of all finite sequences of natural numbers.

Aside: Unbounded≠ infinite

Infinite is as we defined above – it means something that contains a subset of equal cardinality; intuitively, it
means something that has to contain, after renaming, the set of natural numbers.
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Unbounded means finite, but without a fixed bound. This notion is relevant to the above‐described injection
as the sequences themselves are finite, but unbounded – not infinite.

Now: constructing the injection

Recall that cars may look like a sequence, somewhat like 𝑥 = [0, 1, 2, 79, 1056, 8, 1, 0] with cardinality
|𝑥| = 8 or 𝑦 = [0, 0, 0, 0, 0, 0, 1] with cardinality |𝑦| = 7. We have to be able to park any such sequence,
of every possible (finite) length and containing any natural numbers, that comes our way.

Theorem: Fundamental theorem of arithmetic: Every natural number greater than 1 can be written as a
product of prime numbers in only one way.

Recall that a prime number is one which has no nontrivial divisors, and can only be divided by itself and 1.
Begin by writing out a table with one column having a natural number 𝑘, and the 𝑘th prime. There are
infinitely many prime numbers, and so our table goes on forever, as shown in Figure 2.

Figure 2: Table of prime numbers (may be slightly inaccurate)
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Illustration of the fundamental theorem of arithmetic

Consider the number 72. We can represent this as the result of several different arithmetic operations:
• 72 = 50 + 22 = 16 + 30 + 20 + 6 – this doesn’t tell us much, because there are multiple different
ways to add to 72

• 72 = 9 ⋅ 8 = 2 ⋅ 6 ⋅ 4 = 18 ⋅ 2 ⋅ 2 – this doesn’t tell us much either because we don’t necessarily know
which numbers were multiplied

• 72 by multiplication of primes (construction from prime factors):
– 72 = 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3 – this is the only way in which we can obtain 72 uniquely by multiplication
of prime factors (outside of permutations which we can ignore; there is only one way to represent
72 with prime factors).

Now, we can edit the number line to contain only the prime numbers. The question becomes, then: how
many of each prime number should we assign to each location on the number line? For example, 72 has 3 2s
and 2 3s.

Figure 3: Prime factorization table

Problem: We don’t have a way to represent 0 well.

Queens College 4 Professor Bojana Obrenić



Ben Rosenberg CSCI 320: Theory of Computation June 10, 2021

• [1] → 2 = 21
• [1, 0] → 21 ⋅ 30 = 2
• [1, 0, 0] → 21 ⋅ 30 ⋅ 50 = 2

Since 𝑛0 = 1, we lose the factor if we have zero as a sequence component.
The first way to go around this is to disallow zeroes on license plates, which is incorrect. The second way is
to add one to every component in the sequence before mapping it, so that there are no zeroes and we can
use the above approach correctly. We use this second approach in the following definition:

Definition: The Gödel injection is as follows:

𝒢(⟨𝑥1, 𝑥2,…𝑥𝑘⟩) = (prime #1)𝑥1+1 ⋅ (prime #2)𝑥2+1 ⋅ ⋯ ⋅ (prime #𝑘)𝑥𝑘+1

Now, we have:

• [1] → 21+1 = 22 = 4
• [1, 0] → 21+1 ⋅ 30+1 = 12
• [1, 0, 0] → 21+1 ⋅ 30+1 ⋅ 50+1 = 60

Notation: denote the Gödel number of a sequence 𝑥 as 𝒢(𝑥).
Inverse Gödel numbering:

• 𝒢−1(2) = [0]
• 𝒢−1(4480) = ?

The prime factorization of 4480 is 27 ⋅5⋅7. But who parks here? Nobody. There is no sequence that can park
here because there is no prime factor of 3 in its prime factorization. By definition, we need to use the first 𝑘
primes in the Gödel number for a sequence of length 𝑘, each of which needs to have a positive exponent. 7,
which is the largest prime in the factorization, is the fourth prime but there are only 3 different factors. As
such, there is no sequence that corresponds to 4480 with inverse Gödel numbering.

The smallest of these such numbers, without a Gödel sequence, is 3. Also absent are 10 and 9, and 14. Each
of these is missing at least one prime factor. In fact, there are infinitely many numbers which are not Gödel
numbers.

• 𝒢−1(720) = [3, 1, 0]
– The prime factorization of 720 is 24 ⋅ 32 ⋅ 51.

Suppose we are given𝒢−1([𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5]) = 𝑛. Then, 𝑛must be divisible by 10 as a 2 and a 5 appear.
𝑛 is also divisible by 110, as it must have 2, 5, and 11. It is not divisible by 26 as the prime factorization of
26 is 2 ⋅ 13 and 13 is the 6th prime and the length of the sequence is 5.
Suppose we are given 𝒢−1([𝑥1 + 1, 𝑥2 + 2, 𝑥3, 𝑥4, 𝑥5]). Then, with our previous 𝑛, this is equal to 18𝑛
because we have an additional 2 3s and one more 2. Multiplying these together gives 18 as the factor by
which 𝑛 is being multiplied.
Suppose we are given 𝒢−1([𝑥1 + 1, 𝑥2 + 2, 𝑥3, 𝑥4, 𝑥5, 1]). Then, this is 𝑛 ⋅ 131+1 = 𝑛 ⋅ 132 = 169𝑛.

Back to uncountable sets
The Gödel injection existed, which foiled our plan to create an uncountable set. So, we want to continue
trying to find an uncountable set – that is, a set with cardinality greater than ℵ0.

Theorem: The set𝒫(ℕ) is uncountable.
Proof:
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Assume that the above set is countable (for the sake of contradiction). Then, there must exist an injection
from 𝑓 ∶ 𝒫(ℕ) → ℕ.
Aside: the basis for a proof by contradiction is the logical implication operation, in which a false conclusion
means a false starting point (assumption), as long as the reasoning was correct.

Let 𝑓0 = 𝑓−1(0) be the subset that parks at 0. Then, we might have the table shown in Figure 4.

Figure 4: Presumed injection from𝒫(ℕ) to ℕ

Every subset ofℕ must appear in the leftmost column – each must have its own row.
But now we can create our own subset,𝐷, which is defined as follows:
(Aside: defining a set in ℕ as above means to say whether each number is in it or not.)
We define𝐷 as 𝑛 ∈ 𝐷 ⇔ 𝑛 ∉ 𝑓𝑛. In other words, 𝑛 ∈ 𝑓𝑛 ⟹ 𝑛 ∉ 𝐷, and 𝑛 ∉ 𝑓𝑛 ⟹ 𝑚 ∈ 𝐷.
We are effectively going down the diagonal flipping and appending each of the digits therein, giving us the
following𝐷:

𝐷 = {1, 1, 0, 0, 1,… }

This is called diagonalization, and is the preferred (intuitive) method of proving thatℕ is countable.
𝐷 is a subset ofℕ, and is therefore in𝒫(ℕ).
𝐷 must have its own row in the table called, say, 𝛼. Then, 𝐷 = 𝑓𝛼. The problem arises when we attempt
to see whether the natural number 𝛼 is in𝐷. We know that if 𝛼 ∈ 𝐷, then 𝛼 ∉ 𝑓𝛼 by the definition of𝐷.
Then, by the definition of 𝛼, 𝛼 ∉ 𝐷, which is a contradiction.
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Consider the case in which we say that 𝛼 ∉ 𝐷. Then, 𝛼 ∉ 𝐷 ⟹ 𝛼 ∉ 𝑓𝛼 by the definition of 𝛼, and then
by the definition of𝐷, 𝛼 ∈ 𝐷.
This is the crux of the diagonalization argument. We have clearly reached a contradiction, and therefore our
initial assumption was wrong: 𝒫(ℕ) must be uncountable; that is, |𝒫(ℕ)| = ℵ1 > ℵ0. Further questions
of cardinality are insofar as ℵ1 is concerned are outside the scope of this course.

As a general method of proving things in this manner:

• Assume the structure exists
• Use the structure to construct an element which:

– must belong to the structure
– cannot belong to the structure, because we made it to differ from every element in the structure

Summary

• There are uncountably many languages (sets of strings)
• There are countably many strings (Gödel injection)

What is a program? A program is a text string, over some alphabet (ASCII‐7, UTF‐8, etc.). Therefore, there
are countably many programs (the number of programs is ℵ0).

How many problems are there? A problem is a set – a question, which asks whether 𝑥 ∈ 𝑆 . Example: How
far will a hurricane go? The answer to this is as number (distance) that can be transformed into a sequence
of bits:

1|0|1|0|1|0|⋯ |0|1|0|1⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛 bits

This is simply a collection of zeroes and ones, which are answers to true/false questions. There are then as
many problems as there are sets, which means that there are uncountably many problems.

Therefore, there can never be a way to find a program for every problem.

DONEWITH CARDINALITY: EXAM ONMONDAY 6/14/2021
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