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Note: All material covered today may be on the final exam, but only as extra credit.

Nondeterministic Pushdown automata
• Somewhat between finite automata and “everything else” (Turing machines)
• There is a theorem that converts between pushdown automata and context‐free grammars
• Is somewhat like a stack?

PDAs are like a finite automaton but they have an extra tape that is called a stack.

Has an input𝑤0 ∈ Σ∗ on a finite input string. The head on the machine is read‐only, right‐only just like FSAs.

The machine looks at its current state and current symbol, and looks at the top symbol of the stack. The top
symbol will be popped (removed) and a new string is going to be pushed onto the stack.

Figure 1: PDA illustration
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Side note: NPDAs (nondeterministic pushdown automata) are NOTNECESSARILY EQUIVALENT to DPDAs
(deterministic pushdown automata)

BUT: NPDAs ARE equivalent to CFGs (context‐free grammars)

Definition 1: A nondeterministic pushdown automaton is a structure:

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐹 )

such that:

• 𝑄 is the set of states
• Σ is the alphabet
• Γ is the tape alphabet (note: Σ ∩ Γ = ∅; different from Turing machines!)
• 𝛿 is the transition function
• 𝑞0 is the initial state
• 𝐹 is the set of final (accept) states

Transition function
The transition function 𝛿 is a partial function again, defined as follows:

𝛿 ∶ (𝑄 × (Σ ∪ {𝜆}) × (Γ ∪ {𝜆})) → 𝒫(𝑄 × Γ∗)

The state is𝑄, the input symbol is inΣ ∪ {𝜆} (𝜆‐moves are okay)
The top of stack symbol or 𝜆 is Γ ∪ {𝜆}.
The target here is𝒫(𝑄 × Γ∗).
𝑄 is finite, Γ is finite, but |Γ∗| = ℵ0 and |𝑄 × Γ∗| = ℵ0 and |𝒫(𝑄 × Γ∗)| > ℵ0
So, we have the restriction that the outputs are 𝑥 ∈ 𝒫(𝑄 × Γ∗) and |𝑥| ≤ ℵ0.

Our transition function is given in 5‐tuples as follows:

[𝑞, 𝑎, 𝐴, 𝑝, 𝛼]

where:

• 𝑞 ∈ 𝑄 is the current state
• 𝑎 ∈ Σ is the current input symbol
• 𝐴 ∈ Γ is the current top of stack (gets “popped”)
• 𝑝 ∈ 𝑄 is the next state
• 𝛼 ∈ Γ∗ is the next top of the stack (gets “pushed”)

Configuration
The machine has in its configuration the following:

• state, 𝑞
• unprocessed input, 𝑤
• the entire stack content, 𝜎

We write this as (𝑞, 𝑤, 𝜎).
Initial configuration:
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(𝑞0, 𝑤0, 𝜆)

Here, we have 𝑞0 as the initial state, 𝑤0 as the entire input string, and 𝜆 as an empty stack.
Upon moving, we get the new configuration:

(𝑝, 𝑥, 𝜎1)

by performing the calculation:

if [𝑞, 𝑎, 𝑇 , 𝑝, Π] ∈ 𝛿: 𝑤 = 𝑎𝑥, where 𝑎 ∈ Σ ∪ {𝜆} andΠ ∈ Γ∗.

Convention: Write stack as thing that sits on the ground, and add or subtrack by pushing and popping.

By convention, we put the bottom on the left and the top on the right.

So, 𝜎 had a bottom, and a top, 𝜎 = 𝛽𝑇 . After that, it became 𝜎1 = 𝛽Π.
𝜎1𝜎1 ∈ Γ∗.

𝑀 accepts 𝑤0 if there exists a computation that takes𝑀 from (𝑞0, 𝑤0, 𝜆) to (𝑓, 𝜆, 𝜆) where 𝑓 ∈ 𝐹 , 𝑓 is
a final state, and the input and stack are both empty. We start with an empty stack and end with an empty
stack.

It must clear the input, clear the stack, and be in a final state.

Examples
Example: Something intrinsically context‐free

1. 𝐿2 = {𝑎𝑛𝑏𝑛|𝑛 ≥ 0}
We can do this with PDAs because it has memory and can remember how many a’s and b’s it has pushed.

On an a, we push it to the stack. Then, on the b’s, we check the b’s against the a’s and return when we have
as many b’s as a’s.

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞, 𝐹 )
𝑄 = {𝑞}
Σ = {𝑎, 𝑏}
Γ = {𝐴}
𝐹 = {𝑝}
𝛿 :
• [𝑞, 𝑎, 𝜆, 𝑞, 𝐴] (push 𝑎)
• [𝑞, 𝑏, 𝐴, 𝑝, 𝜆] (pop 𝑎)
• [𝑝, 𝑏, 𝐴, 𝑝, 𝜆] (pop 𝑎)

This is incorrect because it misses 𝜆 which is a good string.
We can change this 𝛿 to be correct:
𝛿 :
• [𝑞, 𝑎, 𝜆, 𝑞, 𝐴] (push)
• [𝑝, 𝑏, 𝐴, 𝑝, 𝜆] (pop)
• [𝑞, 𝜆, 𝜆, 𝑝, 𝜆] (jump at any time)
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This last transition will not break the machine’s functionality as any jump from a to b will result in either a
nonempty stack at the end of the input string or a nonempty input string at the end of the stack, preventing
it from accepting.

Algorithms

Algorithm 1 :

Input: Finite automaton𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) that accepts a language 𝐿
Output: Pushdown automaton𝑀1 = (𝑄, Σ, Γ1, 𝛿1, 𝑞1, 𝐹1) that accepts 𝐿
Construction:

• ignore the stack
• 𝑄1 = 𝑄, Γ1 = ∅, 𝑞1 = 𝑞0, 𝐹1 = 𝐹 , and:

– whenever: [𝑞, 𝑎, 𝑝] ∈ 𝛿, with 𝑞, 𝑝 ∈ 𝑄 and 𝑎 ∈ Σ
– then: [𝑞, 𝑎, 𝜆, 𝑝, 𝜆] ∈ 𝑑1.

This automaton being simulated is deterministic (not that it matters because we can just convert it from NFA
to DFA).

“How to fail”

Figure 2: Example PDA

Theorem (aside): A language is context‐free if and only if it is accepted by some pushdown automaton.

Another example: Palindromes

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞, 𝐹 )
𝑄 = {𝑞}
Σ = {𝑎, 𝑏, 𝑐}
Γ = {}
𝐹 = {}
idea: put the first part onto the stack, and pair it off with the second part and pop it. The question is: when
do we reach the middle?

What we will do is have the automaton guess the middle.
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Figure 3: Incorrect FSA representation of the above PDA

Figure 4: What would happen if we put another transition into our example PDA?
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THeorem 4 (Aside): The intersection of a context‐free language with a regular language is context‐free.

𝛿 :
• [𝑞, 𝑎, 𝜆, 𝑞, 𝐴] (push)
• [𝑞, 𝑏, 𝜆, 𝑞, 𝐵]
• [𝑞, 𝑐, 𝜆, 𝑞, 𝐾]
• [𝑝, 𝑎, 𝐴, 𝑝, 𝜆] (pop)
• [𝑝, 𝑏, 𝐵, 𝑝, 𝜆]
• [𝑝, 𝑐, 𝐾, 𝑝, 𝜆]
• [𝑞, 𝜆, 𝜆, 𝑝, 𝜆] (𝜆‐transition from 𝑞 to 𝑝 for even strings)
• [𝑞, (𝑎 ∪ 𝑏 ∪ 𝑐), 𝜆, 𝑝, 𝜆] (guess the middle for an odd case [this is really 3 transitions, not 1])

Last example: Set of exactly those strings where the number of 𝑎’s is equal to the number of 𝑏’s.
Whichever you see first, you push it onto the stack. Then, an 𝑎 comes along – push it. If it is a b, then you
pair it off. Whichever you have a surplus off, you keep it on the stack. When the other comes in, you pair it
off. Repeat this whenever the stack is empty.

Issue: don’t know when the stack is empty. So, we put a sentinel at the beginning that lets us detect when
the stack is empty.

Queens College 6 Professor Bojana Obrenić


	Nondeterministic Pushdown automata
	Transition function
	Configuration
	Examples
	Algorithms
	“How to fail”



