
Lecture 14

Ben Rosenberg

June 29, 2021

Recall:

Definition 1: Language 𝐿 is recursively enumerable if there exists a Turing machine that accepts 𝐿.
Definition 2: Language𝐿 is decidable if there exists a Turing machine that accepts𝐿 and halts on every input.
Definition 3: (Halting problem) 𝐿𝐻 = {(𝑀, 𝑤)|𝑀 is a Turing machine that halts on input𝑤}
Theorem 1: If 𝐿𝐻 is recursively enumerable, then the Universal Turing Machine𝑀𝑈 accepts it.

𝑀𝑈(𝑀, 𝑤) → {halt if 𝑀(𝑤) ↘
diverge if 𝑀(𝑤) ↗

Let𝑀𝐻 be the Turing Machine that decides 𝐿𝐻 :

𝑀𝐻(𝑀, 𝑤) → {halt and accept if 𝑀(𝑤) ↘
halt and reject if 𝑀(𝑤) ↗

𝑀𝐻 does not exist.

Rice’s Theorem

Theorem 2: Let 𝛽 be a nontrivial property of recursively enumerable languages such that 𝛽(∅) = 0. Define
a Turing Machine𝑀𝛽 as follows:

𝑀𝛽(𝑀) = {halt and accept if 𝛽(𝐿(𝑀)) = 1
halt and reject if 𝛽(𝐿(𝑀)) = 0

In brief: 𝑀𝛽(𝑀) = 𝛽(𝐿(𝑀))
𝑀𝛽 does not exist.

Theorem 3: If both 𝐿 and 𝐿 are recursively enumerable, then both 𝐿 and 𝐿 are decidable.
Proof: Let𝑀1 accept 𝐿 by halting, and let𝑀2 accept 𝐿 by halting. (Given.)
We know that if𝐿 is decidable, then𝐿must be too, because we can just flip the acceptance/rejecting states
of 𝐿 to obtain 𝐿.
Construct𝑀 that decides⏟

will always halt

𝐿 and 𝐿.

𝑤 ∈ 𝐿 ⟹ 𝑀1(𝑤) ↘
𝑤 ∉ 𝐿 ⟹ 𝑤 ∈ 𝐿 ⟹ 𝑀2(𝑤) ↘
𝑀 operates as follows:

1

Ben Rosenberg CSCI 320: Theory of Computation June 29, 2021

𝑀 will run𝑀1 and𝑀2 in parallel on input 𝑤.
𝑀1(𝑤)
𝑀2(𝑤)

Exactly one of𝑀1 and𝑀2 will halt, because either 𝑤 ∈ 𝐿 ⟹ 𝑀1(𝑤) ↘ or 𝑤 ∈ 𝐿 ⟹ 𝑀2(𝑤) ↘.

Whichever halts→ decision.

𝐿𝐻 = {(𝑀, 𝑤)|𝑀(𝑤) ↗}
Corollary 4: 𝐿𝐻 is not recursively enumerable.

We know that 𝐿𝐻 is recursively enumerable because𝑀𝑈 accepts it. But 𝐿𝐻 is not decidable because𝑀𝐻
does not exist.

If𝐿𝐻 were recursively enumerable then by the previous theorem, both𝐿𝐻 and𝐿𝐻 would be decidable. But
𝐿𝐻 is not.

Definition 4: A Turing Machine 𝐸 enumerates a language 𝐿 if 𝐸, starting on empty string as input, writes
out exactly the elements of 𝐿 on its designated tape (on which it moves only to the right).
∀𝑥 ∈ 𝐿, 𝑥 will appear printed
We would call the enumerator tape a “stream” in Java or C++ – it is something from which we read.

E >> S >> ...

Definition 5: Lexicographic (dictionary) order of strings assumes an order on alphabet letters, and compares
strings according to the leftmost mismatch.

Ex. Σ = {𝑎, 𝑏, 𝑐} ⟹ 𝑎 < 𝑏 < 𝑐
• 𝑎 < 𝑏
• 𝑎𝑎 < 𝑏

How many strings precede 𝑏? ℵ0 of them.

Definition: In the shortlex order, the shorter string always precedes the longer; strings of equal length are
compared lexographically.

If |𝑥| < |𝑦| ⟹ 𝑥 < 𝑦
If |𝑥| = |𝑦| ⟹ then compare them lexicographically

Under this system, 𝑎𝑎 > 𝑏.
So, every string has only finitely many predecessors under this system.

Algorithm 5 :

Input: Turing Machine𝑀 that decides a language 𝐿.
Output: Turing Machine𝐸 that enumerates the language 𝐿 in shortlex order.
Construction:

For each 𝑤 in Σ∗ in shortlex order {
If𝑀(𝑤) then print 𝑤
else continue

}
Recursively, from strings of length 𝑘, we go to length 𝑘 + 1 by prefixing each string with 𝑎, and then 𝑏,
etcetera.

Queens College 2 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 29, 2021

Algorithm 6 :

Input: Turing Machine𝐸 that enumerates a language 𝐿 in shortlex order.
Output: Turing Machine𝑀 that decides the language 𝐿.
Construction:

Given𝐸 such that E >> S gives 𝐿 in shortlex
Need to construct𝑀(string 𝑤)
𝑀(𝑤) operates as follows:
do

E >> S
if (S == w) then

return true;
if (|S| > |w|) then

return false;
while true

Algorithm 7 :

Input: Turing Machine𝐸 that enumerates a language 𝐿 (not necessarily in shortlex)
Output: Turing Machine𝑀 that accepts the language 𝐿 by halting.
Construction:

do
E >> S
if (S == w) then return true;

while true

If 𝑤 ∈ 𝐿, it will come out of 𝐸 and 𝑀(𝑤) ↘. However, if 𝑤 ∉ 𝐿, then 𝑤 will not come out of 𝐸, and
𝑀(𝑤) ↗.

(And so, this is where the name recursively enumerable came from.)

Algorithm 8 :

Input: Turing Machine𝑀 that accepts a language 𝐿 by halting.
Output: Turing Machine𝐸 that enumerates the language 𝐿.
We cannot do as in Theorem 1, because for some 𝑠 ∈ Σ∗,𝑀(𝑠)may diverge, ⟹ we never get any further.

For 𝑘 = 0, 1, 2, 3, … (𝑘 ∈ ℕ) {
run first 𝑘 steps of𝑀(𝑤) on every string |𝑤| such that |𝑤| ≤ 𝑘;
if halting found, print 𝑤

}
Every 𝑤 ∈ 𝐿 ias accepted by 𝑀 after some 𝑛 steps, meaning that we will od that computation when our
loops guard 𝑘 reaches max(𝑤, |𝑤|).
(This is multithreading with an unbounded number of threads.)

Algorithm 9 :

Input: DFA𝑀 that accepts a language 𝐿
Question: Is 𝐿(𝑀) = ∅?

Queens College 3 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 29, 2021

Construction:

Let 𝑘 be the numberof states of𝑀 . Then,𝐿(𝑀) ≠ ∅ if and only if𝑀 accepts at least one string with length
less than 𝑘.
Proof:

Need to prove: If there exists 𝑤 ∈ 𝐿, then there exists one of length≤ 𝑘.
Assume a shortest 𝑤0 ∈ 𝐿 is such that |𝑤0| ≥ 𝑘. Then, 𝑤0 must pump. Then, we pump𝑤0 down once.

Then, we obtain 𝑤1 ∈ 𝐿 but shorter.
Either |𝑤1| ≥ 𝑘 or |𝑤1| < 𝑘. If |𝑤1| ≥ 𝑘 then we continue to pump.
Algorithm 10 :

Input: DFAs𝑀1 and𝑀2.

Question: Is 𝐿(𝑀1) = 𝐿(𝑀2)?
Reduction:

𝐿(𝑀1) = 𝐿1; 𝐿(𝑀2) = 𝐿2
We know that 𝐿1 = 𝐿2 ⟺ 𝐿1 ⊆ 𝐿2 ∧ 𝐿2 ⊆ 𝐿1 ⟺ 𝐿2\𝐿2 = ∅ ∧ 𝐿2\𝐿1 = ∅ ⟺
(𝐿1 ∪ 𝐿2) ∪ (𝐿2 ∩ 𝐿1) = ∅
This last language is regular, because regular languages are closed under union, intersection, and complement.
As such, we can make an automaton out of this language and test it.

Likewise, 𝐿(𝑀1) ⊆ 𝐿(𝑀2)? We only need to use one side of the union in the above regular language.
Algorithm 11 :

Input: DFA𝑀 that accepts a language 𝐿.
Question: Is 𝐿(𝑀) infinite?
Construction:

Let 𝑘 be the number of states of𝑀 . 𝐿(𝑀) is infinite if and only iff𝑀 accepts at least on string with length
no less than 𝑘 but less than 2𝑘.
This is because this string will pump up ⟹ there are infinitely many good strings ⟹ 𝐿(𝑀) is infinite.
Now we need to prove the other direction – namely, that if 𝐿(𝑀) is infinite, then it has a good string of
length< 2𝑘 and≥ 𝑘.
Assume the opposite – that a shortest string which is larger than 𝑘 is also larger than 2𝑘. Call this string 𝑤0.𝑤0 must pump. Pump it down.

It is impossible to jump, in one pump, from more than 2𝑘 to less than 𝑘, because the pumping window is less
than 𝑘 by the pumping lemma.
Is 𝐿(𝑀) = ∅? Is 𝐿(𝑀) infinite? Is 𝐿(𝑀) = 𝐿? All these questions about 𝐿(𝑀) are unsolvable if𝑀 is a
Turing Machine.

Algorithm 12 :

Input: Context‐free grammar𝐺
Question: Is 𝐿(𝐺) = ∅?
Construction:

Queens College 4 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 29, 2021

We could use P.L. again.

Or, we could use the closure argument.

Input: 𝐺 = (𝑉 , Σ, 𝑃 , 𝑆)
Question: Is 𝐿(𝐺) = ∅?
Construction:

Operation of marking a symbol

Markable symbols are elements of 𝑉 ∪ Σ ∪ {𝜆}
How do we mark?

Base case:

mark 𝜆, all elements ofΣ
Recursively, until no further marking possible:

for each rule [𝐿 → 𝐷] ∈ 𝑃
if the entire𝐷 (every symbol of𝐷) is marked, then mark 𝐿.

once this stops:

return 𝐿(𝐺) ≠ ∅ if and only if the start symbol is marked.
Marking something means we can get to a terminal from it.

A variable is marked if and only if it can derive a terminal string.

Problem 1:

𝐺 = (𝑉 , Σ, 𝑃 , 𝑆), where Σ = {𝑎, 𝑏, 𝑐} and 𝑉 = {𝑆, 𝑇 , 𝐴, 𝐵, 𝐷, 𝐻} and the production set 𝑃 is

• 𝑆 → 𝐷𝐴|𝐷𝐵|𝐷𝑇
• 𝐴 → 𝐴𝐴|𝐷𝐴|𝐷
• 𝐵 → 𝐴𝐵|𝐵𝐴|𝐻
• 𝐷 → 𝑎𝐴𝐵𝐷𝑐|𝑏𝐵𝐴𝐷𝑐|𝐻𝐻𝑐
• 𝐻 → 𝑏𝐵𝐻|𝑐𝐴𝐻|𝑇
• 𝑇 → 𝑇 𝑇 |𝑎|𝐴

The first rule that gives us something to mark is the last one, 𝑇 → 𝑎, as 𝑎 is marked. Next, we look at rule
𝐻 → 𝑇 and we mark 𝐻 because 𝑇 has been marked. Then, we look at the rule 𝐵 → 𝐻 , and then rule
𝐷 → 𝐻𝐻𝑐, and then 𝑆 → 𝐷𝐵; so, the grammar can produce a terminal string.
And so, 𝐿(𝐺) ≠ ∅.
How many strings are there of length≤ 𝑘? There are about |Σ|𝑘 such strings.
The above algorithm runs in about |𝑉 | ⋅ |𝑃 | steps. Thus, it is more efficient than our previous ones.
But in order to use this, we need to convert the DFA into an NFA which is an exponential construction and
thus still inefficient.

For context‐free grammars, only these two questions are solvable (pumping lemma):

• Is 𝐿(𝐺) = ∅?
• Is 𝐿(𝐺) infinite?

Anything about complement or intersection is unsolvable.

Recall Rice’s Theorem: How to make𝑀𝐻
𝑀𝐻 (M, w)$:

Queens College 5 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 29, 2021

Construct𝐷 where𝐷(𝑥) ∶ 𝑀(𝑤); 𝑀1(𝑥)
return𝑀𝛽(0)
Anything that can simulate universal computation like𝐷 can is undecidable.

Post’s Correspondence Problem
Definition:

Input: A finite set of dominoes, where domino 𝑗 contains a pair of strings 𝑝𝑗 (upper) and ℓ𝑗 (lower).

A win (solution) is a finite sequence in which every domino appears (placed vertically) zero or more times,
such that the concatenation of upper strings is equal to the concatenation of lower strings.

Question: Does this set of dominoes have a win (solution)?

Post’s Correspondence Problem is undecidable.

There is no algorithm to tell whether a given instance of P.C.P. has a win.

Figure 1: Example P.C.P. solution

If we are told there is a win, then we can generate all the finite sequences and eventually terminate.

Queens College 6 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 29, 2021

Figure 2: Example impossible P.C.P.

Queens College 7 Professor Bojana Obrenić

	Post’s Correspondence Problem

