Lecture 14

Ben Rosenberg

June 29, 2021

Recall:

Definition 1: Language L is recursively enumerable if there exists a Turing machine that accepts L.
Definition 2: Language L is decidable if there exists a Turing machine that accepts L and halts on every input.
Definition 3: (Halting problem) L ;; = {(M ,w)| M is a Turing machine that halts on input w}

Theorem 1: If L is recursively enumerable, then the Universal Turing Machine M;; accepts it.
halt if M (w) N\
M (M —
v(M,w) {diverge if M(w)
Let My be the Turing Machine that decides L

halt and accept if M (w) \
My (M, w) = {halt and rejectif M (w) &

M, does not exist.

Rice’s Theorem

Theorem 2: Let /3 be a nontrivial property of recursively enumerable languages such that ﬂ(@) = (. Define
a Turing Machine MB as follows:

[haltand acceptif S(L(M))
Mp(M) = {halt and rejectif S(L(M))

1
0

In brief: Mz(M) = B(L(M))

M 3 does not exist.

Theorem 3: If both L and L are recursively enumerable, then both L and L are decidable.
Proof: Let M, accept L by halting, and let M, accept L by halting. (Given.)

We know that iiL is decidable, then L must be too, because we can just flip the acceptance/rejecting states
of L to obtain L.

Construct M that decides L and L.
———

will always halt

weL = M(w)\,
w¢é¢ L = wel = My(w)\

M operates as follows:

Ben Rosenberg CSCI 320: Theory of Computation June 29, 2021

M will run M and M, in parallel on input w.
M, (w)
My (w)
Exactly one of M, and M., will halt, because either w € L = M, (w) \yorw € L = M,y(w) \..
Whichever halts — decision.
Ly = {(M,w)|M(w) 7}
Corollary 4: E is not recursively enumerable.

We know that L j; is recursively enumerable because M, accepts it. But L is not decidable because M
does not exist.

If E were recursively enumerable then by the previous theorem, both L ;; and E would be decidable. But
L, is not.

Definition 4: A Turing Machine E enumerates a language L if E, starting on empty string as input, writes
out exactly the elements of L on its designated tape (on which it moves only to the right).

Va € L, x will appear printed
We would call the enumerator tape a “stream” in Java or C++ - it is something from which we read.
E > S > ...

Definition 5: Lexicographic (dictionary) order of strings assumes an order on alphabet letters, and compares
strings according to the leftmost mismatch.

Ex. ¥ ={a,b,c} = a<b<c

e a<b
e aa < b

How many strings precede b? N, of them.

Definition: In the shortlex order, the shorter string always precedes the longer; strings of equal length are
compared lexographically.

Iflz] < |y = =<y
If |x| = |y| = then compare them lexicographically
Under this system, aa > b.
So, every string has only finitely many predecessors under this system.
Algorithm @:
Input: Turing Machine M that decides a language L.
Output: Turing Machine E that enumerates the language L in shortlex order.
Construction:
For each w in X* in shortlex order {
If M (w) then print w
else continue

}

Recursively, from strings of length &k, we go to length &k + 1 by prefixing each string with a, and then b,
etcetera.

Queens College 2 Professor Bojana Obrenié

Ben Rosenberg CSCI 320: Theory of Computation June 29, 2021

Algorithm @:

Input: Turing Machine E' that enumerates a language L in shortlex order.
Output: Turing Machine M that decides the language L.

Construction:

Given F such thatE >> S gives L in shortlex

Need to construct M (string w)

M (w) operates as follows:

do
E >> S
if (S == w) then
return true;
if (S| > |wl) then
return false;
while true

Algorithm @:
Input: Turing Machine E' that enumerates a language L (not necessarily in shortlex)

Output: Turing Machine M that accepts the language L by halting.

Construction:
do
E >> 8
if (S == w) then return true;

while true

If w € L, it will come out of ' and M (w) \,. However, if w ¢ L, then w will not come out of F, and
M(w) /.

(And so, this is where the name recursively enumerable came from.)

Algorithm :

Input: Turing Machine M that accepts a language L by halting.
Output: Turing Machine E that enumerates the language L.
We cannot do as in Theorem 1, because for some s € >*, M (s) may diverge, =—> we never get any further.
Fork=0,1,2,3,... (k€ N){
run first k steps of M (w) on every string |w| such that |w| < k;
if halting found, print w

}

Every w € L ias accepted by M after some n steps, meaning that we will od that computation when our
loops guard k reaches max(w, w\).

(This is multithreading with an unbounded number of threads.)

Algorithm @:

Input: DFA M that accepts a language L
Question: Is L(M) = ()?

Queens College 3 Professor Bojana Obrenié

Ben Rosenberg CSCI 320: Theory of Computation June 29, 2021

Construction:

Let k be the numberof states of M. Then, L(M) = () if and only if M accepts at least one string with length
less than k.

Proof:

Need to prove: If there exists w € L, then there exists one of length < k.

Assume a shortest w, € L is such that |w0| > k. Then, wy must pump. Then, we pump w, down once.
Then, we obtain w; € L but shorter.

Either |w;| > k or |w, | < k. If |wy| > k then we continue to pump.

Algorithm :

Input: DFAs M, and M.

Question: Is L(M,) = L(M,)?

Reduction:

L(My) = Ly; L(M,) = L,

Weknow that Ly = L, <= L; C Ly ALy C Ly < L\Ly = 0N L\ = 0 <=
(LyULy)U(LyNLy) =0

This last language is regular, because regular languages are closed under union, intersection, and complement.
As such, we can make an automaton out of this language and test it.

Likewise, L(M;) C L(M,)? We only need to use one side of the union in the above regular language.

Algorithm @:

Input: DFA M that accepts a language L.
Question: Is L(M) infinite?
Construction:

Let k be the number of states of M. L(M) is infinite if and only iff M accepts at least on string with length
no less than k but less than 2k.

This is because this string will pump up = there are infinitely many good strings — L(M) is infinite.

Now we need to prove the other direction - namely, that if L(M) is infinite, then it has a good string of
length < 2k and > k.

Assume the opposite - that a shortest string which is larger than £ is also larger than 2k. Call this string w,.
wq must pump. Pump it down.

It is impossible to jump, in one pump, from more than 2k to less than k, because the pumping window is less
than & by the pumping lemma.

Is L(M) = ()2 Is L(M) infinite? Is L(M) = L? All these questions about L(M) are unsolvable if M is a
Turing Machine.

Algorithm @:

Input: Context-free grammar GG
Question: Is L(G) = (2

Construction:

Queens College 4 Professor Bojana Obrenié

Ben Rosenberg CSCI 320: Theory of Computation June 29, 2021

We could use P.L. again.
Or, we could use the closure argument.
Input: G = (V, %, P, S)
Question: Is L(G) = ()2
Construction:
Operation of marking a symbol
Markable symbols are elements of V' U 3 U {\}
How do we mark?
Base case:
mark), all elements of X
Recursively, until no further marking possible:
for eachrule [L — D] € P
if the entire D (every symbol of D) is marked, then mark L.
once this stops:
return L(G) # () if and only if the start symbol is marked.
Marking something means we can get to a terminal from it.
A variable is marked if and only if it can derive a terminal string.
Problem 1:
G=(V,X,P,5),where X = {a,b,c}and V = {S,T, A, B, D, H} and the production set P is

S — DA|DB|DT

A — AA|DA|D

B — AB|BA|H

D — aABDc|bBADc|HHc
H — bBH|cAH|T

T — TT|a|A

The first rule that gives us something to mark is the last one, 7' — a, as a is marked. Next, we look at rule
H — T and we mark H because 1" has been marked. Then, we look at the rule B — H, and then rule
D — HHec,and then S — DB; so, the grammar can produce a terminal string.

And so, L(G) # 0.

How many strings are there of length < k? There are about]Z|k such strings.

The above algorithm runs in about |V| - | P| steps. Thus, it is more efficient than our previous ones.

But in order to use this, we need to convert the DFA into an NFA which is an exponential construction and
thus still inefficient.

For context-free grammars, only these two questions are solvable (pumping lemma):

o s L(G) =02
e Is L(QG) infinite?

Anything about complement or intersection is unsolvable.
Recall Rice’s Theorem: How to make M,

Queens College 5 Professor Bojana Obrenié

Ben Rosenberg CSCI 320: Theory of Computation June 29, 2021

Construct D where D(z) : M (w); M, (x)
return M(0)

Anything that can simulate universal computation like D can is undecidable.

Post’s Correspondence Problem
Definition:
Input: A finite set of dominoes, where domino 7 contains a pair of strings D;j (upper) and Ej (lower).

A win (solution) is a finite sequence in which every domino appears (placed vertically) zero or more times,
such that the concatenation of upper strings is equal to the concatenation of lower strings.

Question: Does this set of dominoes have a win (solution)?
Post’s Correspondence Problem is undecidable.

There is no algorithm to tell whether a given instance of P.C.P. has a win.

e - S5
QA Q2) Cn)

Figure 1: Example P.C.P. solution

If we are told there is a win, then we can generate all the finite sequences and eventually terminate.

Queens College 6 Professor Bojana Obrenié

Ben Rosenberg CSCI 320: Theory of Computation

June 29, 2021

@ n - 00:3\{”)

\/)C(_.Jx \DI =

d&@

Figure 2: Example impossible P.C.P.

\\3-::: O W e cﬁﬂu\p

& ou-f\:l'”ﬂ e b

Queens College 7

als

ey
\

e

Professor Bojana Obreni¢

	Post’s Correspondence Problem

