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Proof that the decidable version of the Universal Turing Machine cannot exist
Recall:

Definition 1: Language 𝐿 is recursively enumerable if there exists a Turing machine that accepts 𝐿.
Definition 2: Language𝐿 is decidable if there exists a Turing machine that accepts𝐿 and halts on every input.
Definition 3: 𝐿𝐻 = {(𝑀, 𝑤)|𝑀 is a Turing machine that halts on input𝑤}
Theorem 1: If 𝐿𝐻 is recursively enumerable, then the Universal Turing Machine𝑀𝑈 accepts it.

𝑀𝑈(𝑀, 𝑤) → {halt if 𝑀(𝑤) ↘
diverge if 𝑀(𝑤) ↗

Let𝑀𝐻 be the Turing Machine that decides 𝐿𝐻 :

𝑀𝐻(𝑀, 𝑤) → {halt and accept if 𝑀(𝑤) ↘
halt and reject if 𝑀(𝑤) ↗

Theorem 2: 𝑀𝐻 does not exist.

Proof: Assume𝑀𝐻 exists. We will construct a new machine𝑀1 from𝑀𝐻 as follows:

𝑀1(𝑀, 𝑤) → {diverge if 𝑀(𝑤) ↘
halt if 𝑀(𝑤) ↗

Recall that the machine𝑀𝐻 accepts if it finds itself in some state‐symbol pair for which there is no transition
in 𝛿, and the state is an accepting state in 𝐹 . In𝑀1, we simply need to “upgrade” these pairs to escape from
the acceptance of𝑀𝐻 .

We need not touch the rejecting states, as they will all halt and therefore be rejected.

Now, we construct Turing Machine𝐷 from𝑀1 as follows:

𝐷(𝑋) = 𝑀1(𝑋, 𝑋)

We see that:

𝐷(𝑋) → {diverge if 𝑋(𝑋) ↘
halt if 𝑋(𝑋) ↗

What will happen on𝐷(𝐷)?
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We will have the following:

𝐷(𝐷) → {diverge if 𝐷(𝐷) ↘
halt if 𝐷(𝐷) ↗

This is evidently a contradiction. We cannot halt if it diverges or diverge if it halts, and yet the above statement
implies that this must be the case.

As such,𝑀𝐻 cannot exist.

□
Thus, we cannot always have the operating system that we would like to have; namely,𝑀𝐻 .

More consequences:

• 𝐿𝐻 is recursively enumerable, but not decidable, and
• 𝑀𝐻 that decides 𝐿𝐻 does not exist.

Church‐Turing thesis

How does a person apply an algorithm?

Consider a gargantuan notebook. In the beginning of the book, within finitely many pages, we have the
algorithmwritten out, like a recipe. Thereafter, we have empty pages forever. The person operates by opening
the algorithm pages, and seeing how to go about it. They alternate between reading some pages and writing
some pages in the blank space.

A page is a finite set of pixels, and thus there are only finitely many possible contents of each page. So, every
possible page in this book, whether it’s an algorithm page, or input page, or intermediate result page, is merely
one of these finitely many possible pages.

This is exactly what a Turing Machine does.

And so, a person applying an algorithm does not do anything other than what a Turing Machine can do. As
such, a Turing Machine is as good as anything else that is yet conceivable.

Aside: 𝐿𝐻 is also called the Halting Problem.

Coming up with other languages that cannot be decided but are recursively enumerable

We cannot reach𝑀𝐻 . We do not know whether we can reach some collection of problems𝑀𝛽, but if we
can build𝑀𝛽 we can build𝑀𝐻 . As such, we will not be able to reach𝑀𝛽. (This is a reduction.)

Definition 4: A property of recursively enumerable languages is that the language is a predicatewhose domain
is the class of recursively enumerable languages.

Examples 𝑃1(𝐿) ⟺ 𝐿 = is empty

• 𝑃1(∅) = 1
• 𝑃1(anything else) = 0

𝑃2(𝐿) ⟺ 𝐿 contains the empty string
• 𝑃2(∅) = 0
• 𝑃2(𝑎∗) = 1
• …

𝑃3(𝐿) ⟺ 𝐿 is infinite
• 𝑃3(∅) = 0
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• 𝑃3(𝑎∗) = 1
• 𝑃3(𝑎) = 0
• 𝑃3((𝑎𝑎)∗) = 1

𝑃4(𝐿) ⟺ 𝐿 consists of an even number of elements
• 𝑃5(∅) = 0
• 𝑃5(𝑎∗) = 1
• 𝑃5(𝑎) = 0
• 𝑃5(𝑎 ∪ 𝑏) = 0
• 𝑃5(𝜆) = 0

𝑃6(𝐿) ⟺ 𝐿 contains a string of even length
• 𝑃6(∅) = 1 (vacuous truth)
• 𝑃6(𝑎∗) = 0
• 𝑃6(𝑎) = 0
• 𝑃6(𝑎 ∪ 𝑏) = 0
• 𝑃6((𝑎𝑎)∗) = 1
• 𝑃6((𝑎 ∪ 𝑏)∗) = 0
• 𝑃6(𝜆) = 1

Rice’s Theorem
Definition 5: A property, say, 𝛼, of recursively enumerable languages, is nontrivial if there exists at least one
recursively enumerable languages for which 𝛼 is true and at least one recursively enumerable language for
which 𝛼 is false.
Otherwise, if 𝛼 sends all recursively enumerable languages to the same value (whether it be true or false) 𝛼
is trivial.

Example: all of the above properties in the examples are nontrivial.

Other examples:

• regular languages
• context‐free languages
• decidable languages (ex. 𝐿𝐻 is not decidable but is recursively enumerable)
• is a specific regular language (ex. complement of that language)

Trivial properties:

• is recursively enumerable (true)
• is uncountably infinite (false)
• anything that is a negation of a tautology (always false) or a tautology (true)

Evidently, nontrivial properties are significantly more interesting.

Rice’s Theorem (definition)

Theorem 3: Let 𝛽 be a nontrivial property of recursively enumerable languages such that 𝛽(∅) = 0. Define
a Turing Machine𝑀𝛽 as follows:

𝑀𝛽(𝑀) = {halt and accept if 𝛽(𝐿(𝑀)) = 1
halt and reject if 𝛽(𝐿(𝑀)) = 0

In brief: 𝑀𝛽(𝑀) = 𝛽(𝐿(𝑀))
𝑀𝛽 does not exist.
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Note: we can always just rewrite 𝛽 to be equal to ¬𝛽, so that 𝛽(∅) is always 0.
So we have:

• 𝑀 is the argument Turing Machine
• 𝐿(𝑀) is the language accepted by𝑀
• 𝛽(𝐿(𝑀)) is the value of 𝛽 for 𝐿(𝑀)
• 𝑀𝛽(𝑀) = 𝛽(𝐿(𝑀))

Proof that 𝑀𝛽 does not exist: (proves that we cannot convert between a regular expression and a Turing
Machine’s language)

We will use𝑀𝛽 to build𝑀𝐻 . Once we use𝑀𝛽 to build𝑀𝐻 , we will have proven that𝑀𝛽 cannot exist.

Let 𝐿1 be a recursively enumerable language such that 𝛽(𝐿1) = 1 (is true). Observe that 𝐿1 ≠ ∅ by the
above definition of 𝛽.
Let 𝑀1 accept 𝐿1 by halting. (𝑀1 accepts 𝐿1 because there has to be one that accepts 𝐿1 because it is
recursively enumerable.)

Our𝑀𝐻 operates as follows:

𝑀𝐻(𝑀, 𝑤):
• construct Turing Machine𝐷

– 𝐷(𝑥):
* run𝑀(𝑤) until 𝑥; then,
* run𝑀1(𝑥)

• return𝑀𝛽(𝐷)
Indeed,𝑀𝐻 gives the correct answer.

Case 1: 𝑀(𝑤) ↗
• 𝑀(𝑤) ↗ ⟹ 𝐷(𝑥) ↗ because𝐷 will never reach 𝑥 as it will be busy with𝑀(𝑤).

– This implies that 𝐿(𝐷) = ∅. But then 𝛽(𝐿(𝐷)) = 𝛽(∅) = 0. And then, 𝑀𝛽(𝐷) =
𝛽(𝐿(𝐷)) = 𝛽(∅) = 0

– And so,𝑀𝐻(𝑀, 𝑤) = 𝑀𝛽(𝐷) = 0.
Case 2: 𝑀(𝑤) ↘
• 𝑀(𝑤) ↘ ⟹ 𝐷(𝑥) = 𝑀1(𝑥) ⟹ 𝐿(𝐷) = 𝐿(𝑀1) = 𝐿1 ⟹ 𝛽(𝐿(𝐷)) = 𝛽(𝐿1) =

1 ⟹ 𝑀𝛽(𝐷) = 𝑀𝛽(𝐿(𝐷)) = 𝛽(𝐿1) = 1.
And so, our machine gives the correct answer of 0 or 1 depending on whether𝑀 halts on 𝑤 or not.
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