
Lecture 12

Ben Rosenberg

June 24, 2021

From last time: Algorithms for converting Turing machines between one that accepts by halting and one that
accepts by final state.

Algorithm 1:

Input: Turing machine𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0) that accepts by halting some language 𝐿;
Output: Turing machine𝑀1 = (𝑄1, Σ, Γ1, 𝛿1, 𝑞1, 𝐹 ) that accepts 𝐿 by final state
Construction: 𝑀1 is𝑀 , but with every state final.

So,𝑄1 = 𝑄, Γ1 = Γ, 𝛿1 = 𝛿, 𝑞1 = 𝑞, and 𝐹 = 𝑄.
Algorithm 2:

Input: Turing machine𝑀1 = (𝑄1, Σ, Γ1, 𝛿1, 𝑞1, 𝐹 ) that accepts 𝐿 by final state;
Output: Turing machine𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0) that accepts by halting some language 𝐿
Construction idea: Whenever𝑀1 rejects, let𝑀 escape (diverge).

Problem: 𝑀1 may reject (halt in a non‐final state, on a bad string).

Whenever𝑀1 would reject, we will tell𝑀 to escape. For every state‐symbol pair (𝑝, 𝑞), with 𝑝 ∈ 𝑄1 and𝑎 ∈ Γ1 such that:

1. [𝑝, 𝑎, _, _, _] ∉ 𝛿1 (𝑀1 halts in 𝑝 looking at 𝑎), and
2. 𝑝 ∉ 𝐹 (𝑀1 rejects there),

we introduce into 𝛿 the tuple [, 𝑎, 𝑒, 𝑎, 𝑅] where 𝑒 ∉ 𝑄1 is a new state, and also [𝑒, 𝛼, 𝑒, 𝛼, 𝑅] for every
𝛼 ∈ Γ. So, we escape using 𝑒.
Then, we have:

• 𝑄 = 𝑄1 ∪ {𝑒}
• Γ1 = Γ
• 𝛿 = 𝛿1 ∪ {new tuples}

Example: Problem 9: accepts by final state exactly those strings that begin and end with 0

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞, 𝐹 )
𝑄 = {𝑞, }
Σ = {0, 1}
Γ = {0, 1, 𝐵, }
𝐹 = {}
𝛿 ∶ [𝑞, 0, 𝑝, 0, 𝑅]; [𝑝, 0, 𝑝, 0, 𝑅]; [𝑝, 1, 𝑝, 1, 𝑅]; [𝑝, 𝐵, 𝑠, 𝐵, 𝐿]; [𝑠, 0, 𝑓, 0, 𝐿]; [𝑠, 1, ℎ, 1, 𝑅]; [ℎ, 𝐵, ℎ, 𝐵, 𝑅]
Now, we want to construct a machine of Problem 9 that accepts by halting.

1



Ben Rosenberg CSCI 320: Theory of Computation June 24, 2021

So, we need to add: [𝑒, 0, 𝑒, 0, 𝑅]; [𝑒, 1, 𝑒, 1, 𝑅]; [𝑒, 𝐵, 𝑒, 𝐵, 𝑅]; [𝑞, 1, 𝑒, 1, 𝑅]; [𝑞, 𝐵, 𝑒, 𝐵, 𝑅]; [𝑠, 𝐵, 𝑒, 𝐵, 𝑅]; [ℎ, 0, 𝑒, 0, 𝑅]; [ℎ, 1, 𝑒, 0, 𝑅].
Example: Problem 8: Turing machine over alphabet {0, 1} that accepts by halting those strings that contain
11 as a substring.

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞)
𝑄 = {𝑞, 𝑛, 𝑓}
Σ = {0, 1}
Γ = {0, 1, 𝐵}
𝛿 ∶ [𝑞, 0, 𝑞, 0, 𝑅]; [𝑞, 1, 𝑛, 1, 𝑅]; [𝑞, 𝐵, 𝑞, 𝐵, 𝑅]; [𝑛, 1, 𝑓, 1, 𝑅]; [𝑛, 0, 𝑞, 0, 𝑅]; [𝑛, 𝐵, 𝑞, 𝐵, 𝑅]
This accepts by halting (0 ∪ 1)∗11(0 ∪ 1)∗.

We can make this accept by final state by simply putting𝑄 into the position of the set of final states, 𝐹 .
Definition 1: Language 𝐿 is recursively enumerable if there exists a Turing machine that accepts 𝐿.
Here, 𝐿 can accept by halting or by final state.
Definition 2: Language 𝐿 is decidable (called “recursive” in older books) if there exists a Turing machine that
accepts 𝐿 and halts on every input.
So, decidable ⟹ recursively enumerable.

Note that in definition 2, 𝐿 can only accept by final state (not halting since it always halts).
Example: Problem 8: Turing machine over alphabet {0, 1} that accepts by halting those strings that contain
11 as a substring.

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞, 𝑄)
𝑄 = {𝑞, 𝑛, 𝑓}
Σ = {0, 1}
Γ = {0, 1, 𝐵}
𝛿 ∶ [𝑞, 0, 𝑞, 0, 𝑅]; [𝑞, 1, 𝑛, 1, 𝑅]; [𝑞, 𝐵, 𝑞, 𝐵, 𝑅]; [𝑛, 1, 𝑓, 1, 𝑅]; [𝑛, 0, 𝑞, 0, 𝑅]; [𝑛, 𝐵, 𝑞, 𝐵, 𝑅]
This accepts by halting 𝐿 = (0 ∪ 1)∗11(0 ∪ 1)∗, and diverges on 𝐿.
Example: Problem 9: accepts by final state exactly those strings that begin and end with 0

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞, 𝐹 )
𝑄 = {𝑞, }
Σ = {0, 1}
Γ = {0, 1, 𝐵, }
𝐹 = {𝑓}
𝛿 ∶ [𝑞, 0, 𝑝, 0, 𝑅]; [𝑝, 0, 𝑝, 0, 𝑅]; [𝑝, 1, 𝑝, 1, 𝑅]; [𝑝, 𝐵, 𝑠, 𝐵, 𝐿]; [𝑠, 0, 𝑓, 0, 𝐿]; [𝑠, 1, ℎ, 1, 𝑅]; [ℎ, 𝐵, ℎ, 𝐵, 𝑅]
[𝑒, 0, 𝑒, 0, 𝑅]; [𝑒, 1, 𝑒, 1, 𝑅]; [𝑒, 𝐵, 𝑒, 𝐵, 𝑅]; [𝑞, 1, 𝑒, 1, 𝑅]; [𝑞, 𝐵, 𝑒, 𝐵, 𝑅]; [𝑠, 𝐵, 𝑒, 𝐵, 𝑅]; [ℎ, 0, 𝑒, 0, 𝑅]; [ℎ, 1, 𝑒, 0, 𝑅].
Accept: 0(0 ∪ 1)∗ ∪ 0; reject: 1(0 ∪ 1)∗; diverge: 0(0 ∪ 1)∗1.
Both (8) and (9) might be decidable, but we don’t know, because by definition there might exist machines that
do satisfy the “good behavior” of halting on every input.

Algorithm 3:

Input: DFA𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) that accepts a language 𝐿
Output: Turing machine𝑀1 = (𝑄1, Σ, Γ1, 𝛿1, 𝑞1, 𝐹 ) that decides 𝐿

Queens College 2 Professor Bojana Obrenić



Ben Rosenberg CSCI 320: Theory of Computation June 24, 2021

Construction:

• 𝑄1 = 𝑄
• Σ = Σ
• Γ1 = Σ ∪ {𝐵}
• 𝑞1 = 𝑞0
• 𝐹 = 𝐹
• 𝛿1 is logically 𝛿. Whenever we have [𝑝, 𝑎, 𝑡] ∈ 𝛿, then [𝑝, 𝑎, 𝑡, 𝑎, 𝑅] is in 𝛿1.

In effect, the Turing machine is simulating the DFA.

Why will𝑀1 halt? Because𝑀 , being deterministic, will get to the end of the input,𝑀1 will hit the blank𝐵,
and therefore𝑀1 must halt since it has no transitions on𝐵 in𝑀 . (Because𝐵 ∉ Σ.)
“How to fail”: Let𝑀 (the finite automaton) be nondeterministic and try to use the same algorithm. We can’t
do this because NFAs can get stuck on an state (they can “die”) if there isn’t an input in 𝛿 that supports the
transition. A simulator Turing machine would halt and accept even if there were not a transition for it, as long
as it was in an accept state.

Figure 1: This Turing machine would accept abba when simulating this NFA, even though it shouldn’t

In all simulations, we need a pair of simulation algorithms that witnesses equivalence between the standard
Turing machine and te “extended” one.

Input: Standard Turing machine𝑀 ; Output: Equivalent extended Turing machine𝑀
Input: Extended Turing machine𝑀 ; Output: Equivalent standard Turing machine𝑀
We will omit these algorithms in this class for brevity.

Extended Turing machines

Multiple‐track Turing machine For a multiple‐track Turing machine, we have 𝛿 ∶ (𝑄 × Γ1) → (𝑄 × Γ1 ×
{𝐿, 𝑅}). Here, Γ1 is composed essentially of 5‐letter words, or a 5‐tuple of letters.

Turing machine with 2‐way infinite tape Idea: turn it into a 2‐track machine with a sentinel that says when
to switch the track being processed

Multiple‐tape Turingmachine (different frommulti‐track because there aremultiple heads) Can one Turing
machine simulate three Turing machines?

Yes: convert to Multi‐track machine; 𝑘 tapes become 2𝑘 tracks, as each of the 𝑘 gets a work track and a
helper track.

Queens College 3 Professor Bojana Obrenić



Ben Rosenberg CSCI 320: Theory of Computation June 24, 2021

Figure 2: Multi‐track Turing machine

Figure 3: 2‐way infinite tape

Queens College 4 Professor Bojana Obrenić



Ben Rosenberg CSCI 320: Theory of Computation June 24, 2021

Figure 4: Multi‐tape Turing machine

Queens College 5 Professor Bojana Obrenić



Ben Rosenberg CSCI 320: Theory of Computation June 24, 2021

Figure 5: Multi‐tape Turing machine

Queens College 6 Professor Bojana Obrenić



Ben Rosenberg CSCI 320: Theory of Computation June 24, 2021

The helper tracks have a sentinel that indicates the current location of the above worker track’s head. We
erase that sentinel and rewrite it as necessary to simulate the movement of the worker tracks.

Universal Turing machine

Definition 3: 𝐿𝐻 = {(𝑀, 𝑤)|𝑀 is a Turing machine that halts on input𝑤}
Theorem 4: 𝐿𝐻 is recursively enumerable.

There exists a Universal Turing Machine 𝑀𝑈 that operates as follows:

𝑀𝑈(𝑀, 𝑤) {halt if 𝑀(𝑤) ↘
diverge if 𝑀(𝑤) ↗

𝑀𝑈 is the prototype of a general operating system. 𝑀𝑈 is really the only Turing machine that we build; all
others are simulated by it.

Construction:

Figure 6: Universal Turing Machine illustration

Queens College 7 Professor Bojana Obrenić



Ben Rosenberg CSCI 320: Theory of Computation June 24, 2021

This goes on forever unless 𝑀𝑈 hits a pair (state, symbol) of 𝑀 for which 𝑀 has no transition in 𝛿. This
means that𝑀 would have halted there ⟹ 𝑀𝑈 halts.

Nondeterministic Turing machine

In a nondeterministic Turing machine 𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0), the transition function 𝛿 is a partial function
𝛿 ∶ (𝑄 × Γ) → 𝒫((𝑄 × Γ × {𝐿, 𝑅})).
Nondeterministic𝑀 halts if there exists a computation sequence that leads to halting. Acceptance is similar:
if there is a way for it to halt on a final state, we say it will.

Theorem 5: 𝑀𝑈 , which is deterministic, simulates non‐deterministic Turing machines.

We will upgrade𝑀𝑈 so that it will “discover” halting if it exists if its argument𝑀 is nondeterministic.

Upgrade to𝑀𝑈 : What if𝑀𝑈 finds several applicable tuples of𝑀? It should find a way to do them all.

Short idea for𝑀𝑈 : For every𝑀 , there exists 𝑘 ∈ ℕ such that𝑀 can be written to have either 0 moves or
𝑘 moves applicable to every (state, symbol) pair. Select 𝑘 big enough (repeat a move where needed).
Observe that every possible computation ofℕ is defined by a sequence𝑛1𝑛2𝑛3 …where every 1 ≤ 𝑛1 ≤ 𝑘.
Every possible computation corresponds to a sequence whose elements are numbers from [1, … , 𝑘].
So,𝑀𝑈 will generate every sequence, in increasing order of length, and run it.

Figure 7: To be covered next time

Queens College 8 Professor Bojana Obrenić


	Extended Turing machines
	Universal Turing machine
	Nondeterministic Turing machine

