
Lecture 11

Ben Rosenberg

June 23, 2021

Turing machines
Recall that we were defining a Turing machine.

Definition: A Deterministic Turing Machine is a structure:

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0)

such that:

• 𝑄 is a finite set of states
• Σ is the input alphabet
• Γ is the tape alphabet
• 𝛿 is the transition function
• 𝑞0 ∈ 𝑄 is the initial state

For Turingmachines, we say thatΓ is the tape alphabet, andΣ ⊂ Γ because of the “blank” symbol𝐵 ∈ Γ\Σ.
The transition function of a Turing machine is a partial function defined as:

𝛿 ∶ (𝑄 × Γ) → (𝑄 × Γ × {𝐿, 𝑅})
Here, (𝑄 × 𝐺𝑎𝑚𝑚𝑎) is the current state‐symbol pair, and {𝐿, 𝑅} is the direction that it moves. The
machine reads the current state and symbol, and then overwrites something in its current location before
moving.

Our 𝛿 is composed of 5‐tuples, of the form [𝑞, 𝑎, 𝑝, 𝑏, 𝐷]where 𝑞 is the current state, 𝑎 is the crrent symbol,
𝑝 is the next state, 𝑏 is the symbol to overwrite, and𝐷 (the direction) is either 𝐿 or𝑅 for left or right.

Configuration: For a finite state automaton, we had a state‐string pair (𝑞, 𝑤) where 𝑞 was the current state
and 𝑤 was the rest of the input string to be read.

For a Turing machine, the configuration consists of the following:

• state
• the entire tape content
• the position of the head on the tape

By convention, we write this as 𝑤1𝑞𝑤2, where 𝑤1, 𝑤2 ∈ Γ∗, and 𝑞 ∈ 𝑄 is the current state. Here, 𝑤1 is
the string to the left, and 𝑤2 is the string under the head and to the right (it includes the current input to be
processed). It’s understood that it is really𝑤1𝑞𝑤2𝐵∞, but this is really not how it is supposed to be written
(even if there are infinitely many blanks).

Initial configuration: 𝑞0𝑤0, 𝑤0 ∈ Σ∗

From the current configuration𝑤1𝑞𝑤2; 𝑤1, 𝑤2 ∈ Γ∗, 𝑞 ∈ 𝑄
The next configuration 𝑥1𝑝𝑥2; 𝑥1, 𝑥2 ∈ Γ∗, 𝑝 ∈ 𝑄 is calculated as follows:

1



Ben Rosenberg CSCI 320: Theory of Computation June 23, 2021

Case 1: Right move.

Figure 1: Diagramming of a right move

We read [𝑞, 𝑎, 𝑝, 𝑏, 𝑅] ∈ 𝛿 as “at state 𝑞, on reading 𝑎, overwrite 𝑎 with 𝑏 and move to state 𝑝, and move
right on the tape.”

So, 𝑥1 = 𝑤1𝑏, and 𝑥2 is defined in terms of 𝑤2 as 𝑤2 = 𝑎𝑥2. Again, 𝑤1, 𝑤2, 𝑥1, 𝑥2 ∈ Γ∗.

Case 2: Left move.

We read [𝑞, 𝑎, 𝑝, 𝑏, 𝐿] ∈ 𝛿 and see that the new 𝑤1 is 𝑥1𝑐, 𝑐 ∈ Γ∗, and 𝑥2 = 𝑐𝑏𝑦 where 𝑤2 = 𝑎𝑦. Again,
𝑥1, 𝑥2, 𝑤1, 𝑤2, 𝑦 ∈ Γ∗ and 𝑎, 𝑐 ∈ Γ.

Case 3: No move.

We have no move when we get [𝑞, 𝑎, _, _, _] ∉ 𝛿, which cannot execute. We say that the machine halts in
this circumstance.

When does a Turing machine halt? When it does not have a tuple that applies. The current state and symbol
are enough to determine whether or not the tuple applies.

Examples:
Problem 1: Turing machine over alphabet {0, 1} that always halts.
𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞)
𝑄 = {𝑞}
Σ = {0, 1}
Γ = {0, 1, 𝐵}
𝛿 ∶ empty; no transitions
Problem 2: Turing machine over alphabet {0, 1} that never halts (it diverges).

Queens College 2 Professor Bojana Obrenić



Ben Rosenberg CSCI 320: Theory of Computation June 23, 2021

Figure 2: Diagramming of a left move

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞)
𝑄 = {𝑞}
Σ = {0, 1}
Γ = {0, 1, 𝐵}
𝛿 ∶ [𝑞, 0, 𝑞, 0, 𝑅]; [𝑞, 1, 𝑞, 1, 𝑅]; [𝑞, 𝐵, 𝑞, 𝐵, 𝑅] (Note that 𝑞 is the singular state here, which indicates that
we should move to the right.)

We’ll set our machine to “escape” to the right: all 𝛿‐tuples will be have𝐷 = 𝑅.
Def (informal): Skipping is moving over inputs without regard for what is there.

The above machine continues skipping inputs and moving to the right.

Def (informal): A Turing machine “escapes” if, for a new state, we continue skipping the state, and moving to
the right.

Problem 3: Turing machine over alphabet {0, 1} that turns its input string into its bit‐wise complement and
then halts.

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞)
𝑄 = {𝑞}
Σ = {0, 1}
Γ = {0, 1, 𝐵}
𝛿 ∶ [𝑞, 0, 𝑞, 1, 𝑅]; [𝑞, 1, 𝑞, 0, 𝑅]
Here we are skipping over the input, with a minor twist (instead of writing the original symbol, we write its
complement). When we reach a𝐵, we halt.
Problem 4: Turing machine over alphabet {0, 1} that flips the rightmost zero of its input string into 1 and
then halts; if the input string does not contain any zewros then it halts without modifying the input.

Queens College 3 Professor Bojana Obrenić



Ben Rosenberg CSCI 320: Theory of Computation June 23, 2021

Ex. 0100010011 → 0100010111

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞)
𝑄 = {𝑞, 𝑝, 𝑠, 𝑡}
Σ = {0, 1}
Γ = {0, 1, 𝐵}
𝛿 ∶ [𝑞, 0, 𝑝, 0, 𝑅]; [𝑞, 1, 𝑞, 1, 𝑅]; [𝑝, 0, 𝑝, 0, 𝑅]; [𝑝, 1, 𝑝, 1, 𝑅]; [𝑝, 𝐵, 𝑠, 𝐵, 𝐿]; [𝑠, 0, 𝑡, 1, 𝑅]; [𝑠, 1, 𝑠, 1, 𝐿]
Plan: skip over input (go to the right until we hit a 𝐵). Then, turn back to the left, skipping over input until
we get to 0. Then, we flip that zero and halt.

The problem is that there might not be any zeroes. To rectify this, we can, instead of skipping, we can discover
if there is a zero, and remember the fact that we have seen zero in the state. If we have seen a zero, then turn
back; otherwise, we just halt.

Note that we can’t remember exactly which state we’ve seen the zero, as there are only finitely many states.
If we were to try to make 𝑛 states to keep track of each position in the string, the string might have a length
of 𝑛 + 1: we cannot write a machine in terms of a string! The input is unbounded and we have only finitely
many states.

Note: Whenever we have an 𝐿 transition, we need to be sure that we will not break the machine by going
before the start of the input string.

Problem 5: Turing machine over alphabet {0, 1} that shifts its input by one cell to the right, writes 1 into the
leftmost cell, turns the input string into its bit‐wise complement, returns the head to the leftmost cell, and
then halts.

Ex. 10101110 → 110101110 → 101010001, and return the head to the leftmost position and halt.

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞)
𝑄 = {𝑞, 𝑛, 𝑥, 𝑠, 𝑡, 𝑓}
Σ = {0, 1}
Γ = {0, 1, 𝐵, 𝑛}
Idea: We can always remember the previous symbol in the state, as there are only finitely many symbols in
Σ.
New issue: How do we know where the leftmost symbol is? Idea: We can place a sentinel character there,
which will tell us the location of the leftmost position.

𝛿 ∶ [𝑞, 0, 𝑛, 𝑁, 𝑅]; [𝑞, 1, 𝑥, 𝑁, 𝑅]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
sentinel

; [𝑛, 0, 𝑛, 1, 𝑅]; [𝑛, 1, 𝑥, 1, 𝑅]; [𝑥, 0, 𝑛, 0, 𝑅]; [𝑥, 1, 𝑥, 0, 𝑅]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
shift and flip

;

[𝑛, 𝐵, 𝑆, 𝐵, 𝐿]; [𝑥, 𝐵, 𝑆, 𝐵, 𝐿]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
turn back

; [𝑠, 0, 𝑠, 0, 𝐿]; [𝑠, 1, 𝑠, 1, 𝐿]; [𝑠, 𝑁, 𝑡, 1, 𝑅]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
look for left end

; [𝑡, 0, 𝑓, 0, 𝐿]; [𝑡, 1, 𝑓, 1, 𝐿]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
park

Issue: we missed the case in which the entire string was blank. In this case, we are halting because there is
no transition for 𝑞 on 𝐵. So, we make one: [𝑞, 𝐵, 𝑡, 𝑁, 𝑅]. Then, in 𝑡 we need to add a transition on 𝐵:
[𝑡, 𝐵, 𝑓, 𝐵, 𝐿].

Practice:

Problem 6: interpret input string as the binary representation of a positive number, and increment its input
by 1

Problem 7: (a,b,c,d): examine input string and halt if the input string satisfies the form𝑎𝑛𝑏𝑛𝑐𝑛𝑑𝑛 but diverges
otherwise

Queens College 4 Professor Bojana Obrenić



Ben Rosenberg CSCI 320: Theory of Computation June 23, 2021

Halting problem
Defintion 2: Turing machine𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0) accepts a language 𝐿 by halting if for every string 𝑤 ∈
Σ∗,𝑀 behaves as follows:

𝑤 ∈ 𝐿 ⟹ 𝑀(𝑤) ↘ (𝑀 halts on 𝑤)
𝑤 ∉ 𝐿 ⟹ 𝑀(𝑤) ↗ (𝑀 diverges on 𝑤)

If the string is good, the machine will halt; if the string is not good, it will not halt. But we can’t tell. This is
the halting problem.

Problem 8: Turing machine over alphabet {0, 1} that accepts by halting those strings that contain 11 as a
substring.

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞)
𝑄 = {𝑞, 𝑛, 𝑓}
Σ = {0, 1}
Γ = {0, 1, 𝐵}
𝛿 ∶ [𝑞, 0, 𝑞, 0, 𝑅]; [𝑞, 1, 𝑛, 1, 𝑅]; [𝑞, 𝐵, 𝑞, 𝐵, 𝑅]; [𝑛, 1, 𝑓, 1, 𝑅]; [𝑛, 0, 𝑞, 0, 𝑅]; [𝑛, 𝐵, 𝑞, 𝐵, 𝑅]
This accepts by halting (0 ∪ 1)∗11(0 ∪ 1)∗.

Definition 3: Turing machine
𝑀1 = (𝑄, Σ, Γ, 𝛿, 𝑞0, F)

accepts a language 𝐿 by final state if, for every string 𝑤 ∈ Σ∗,𝑀1 behaves as follows:

𝑤 ∈ 𝐿 ⟹ 𝑀1(𝑤) ↘ in a final state

𝑤 ∉ 𝐿 ⟹ either𝑀1(𝑤) ↗ or𝑀1(𝑤) ↘ in a non‐final state

Problem 9: accepts by final state exactly those strings that begin and end with 0

𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞, 𝐹 )
𝑄 = {𝑞, }
Σ = {0, 1}
Γ = {0, 1, 𝐵, }
𝐹 = {}
𝛿 ∶ [𝑞, 0, 𝑝, 0, 𝑅]; [𝑝, 0, 𝑝, 0, 𝑅]; [𝑝, 1, 𝑝, 1, 𝑅]; [𝑝, 𝐵, 𝑠, 𝐵, 𝐿]; [𝑠, 0, 𝑓, 0, 𝐿]; [𝑠, 1, ℎ, 1, 𝑅]; [ℎ, 𝐵, ℎ, 𝐵, 𝑅]

Algorithms (to be continued next time)

Algorithm 1:

Input: Turing machine𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0) that accepts by halting some language 𝐿;
Output: Turing machine𝑀1 = (𝑄1, Σ, Γ1, 𝛿1, 𝑞1, 𝐹 ) that accepts 𝐿 by final state
Algorithm 2:

Input: Turing machine𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞, 𝐹 ) that accepts 𝐿 by final state;
Output: Turing machine𝑀1 = (𝑄1, Σ, Γ1, 𝛿1, 𝑞0) that accepts by halting some language 𝐿

Queens College 5 Professor Bojana Obrenić


	Turing machines
	Case 1: Right move.
	Case 2: Left move.
	Case 3: No move.
	Examples:
	Practice:

	Halting problem
	Algorithms (to be continued next time)



