Lecture 10

Ben Rosenberg

June 22, 2021

Recall: to prove that a language L is not regular:

- 1. Recognize a property that must be satisfied by all elements of L
- 2. Assume that L is regular, name the positive constant of the Pumping Lemma
- 3. Select an element $w \in L$ that is long enough to pump
- 4. For every admissible pumping decomposition w = xyz
- Select i such that $xy^i z$ violates the recognized property, which means that $xy^i z \in L$

Consider $\Sigma = \{a, b\}$ and $p \equiv$ the set of palindromes over Σ . Then, the property is that the strings are palindromic. Let n > 0 be the constant of the P.L.

How to fail: select a long palindrome. The thing is, a^{n+1} is a palindrome, and remains so when it is pumped even though it is long enough to pump because $|a^{n+1}| > n$.

Back to the solution: recall that we want some string for which we can do this:

Figure 1: Pumping

Select a string: $w = a^n b a^n$. We have |w| = 2n + 1 > n and so w must pump.

$$a^n$$
 b^n a^n

Where is the pumping window? To the left of the n-line.

We say that the P.W. is a^j for some j > 0.

Pumping up once gives w_1 with n + j a's; $w_1 = a^{n+j}na^n$.

Since the (n + 1)st symbol from the right is b and the (n + 1)st symbol from the left is a, w_1 cannot be a palindrome.

(Note that the pumping window cannot be of zero length by definition.)

Another example: Suppose that we have the set of strings $L_S = \{a^n | n = k^2, k \in \mathbb{N}\}$.

So, $L_S=\{\lambda,a,aaaa,a^9,a^{16},a^{25},\dots\}.$

We want to prove that L_S is not regular. The property that we will use is that the number of a's is a square of a natural number.

Assume for the sake of contradiction that L_S is regular. Let $\alpha > 0$ be the constant of the P.L. Select a string $w = a^{n^2}$ where $n > \alpha$.

Wherever the pumping window is, it is equal to a^j for some j such that $1 \le j \le \alpha$ (in accordance with the constraints provided by the pumping lemma).

Puump w up once, and obtain $w_1 = a^{n^2+j}$. We need to prove that $n^2 + j$ is not a square of a natural number.

We know that $n^2 < n^2 + j < n^2 + \alpha$ by the constraints on j. This in turn is strictly less than $n^2 < n$ because of our choice of n as greater than α . Then, this is strictly less than $n^2 + 2n + 1$ by arithmetic. Since this is $(n+1)^2$, we have $n^2 < |w_1| < (n+1)^2$. And so, if $|w_1$ is a square, then it cannot be the square of some natural number.

The length of a string in a regular language has the form $\alpha n = \beta$, for $n \ge 0$ and constants α and β . This comes from the Kleene star.

The difference between a regular language and, say, the language defined above as L_S , is in the difference between any two consecutive possible lengths. Between n^2 and $(n + 1)^2$ in L_S , we have a difference of 2n + 1 which grows unboundedly. Any such function besides linear functions will grow unboundedly as the difference between points becomes unbounded. We should know that a language is not regular when its size does not honor this pattern.

Pumping lemma for context-free languages

Regular languages pump because the automata that represent it are finite, and have only so many states. Eventually, a state will be repeated.

Similarly, a context-free language will pump because its grammar has only so many variables; waiting long enough will lead to a variable being repeated in the derivation.

Theorem:

Let L be a context-free language. Then:

 $\begin{array}{l} (\exists k>0)(\forall w\in L)(|w|>k \implies ((\exists x,y_1,t,y_2,z\in \Sigma^*)(w=xy_1ty_2z\wedge |y_1ty_2\leq k\wedge |y_1y_2|>0\wedge ((\forall i\geq 0)(xy_1^ity_2^iz\in L))))) \end{array}$

In effect, the pumping window is split in general, and the two pieces pump in sync. (This comes from tele-scoping.)

Example: $L_3\{a^nb^nc^n|n \ge 0\}$. Intuitively, this cannot be telescoping because there are three variables and not two – the "parentheses are unmatched."

Proof that L_3 is not context-free: Assume that it is. The property is that the number of a's is equal to the number of b's and the number of c's.

Let k > 0 be the constant of the P.L. Select $w = a^n b^n c^n$ for some n > k. Where is the pumping window?

Figure 2: Enumeration of possible positions of the pumping window

By our own choice, we cannot pump up a's, b's, and c's at the same time because the pumping window cannot exceed a length of k and n > k.

Pumping up once gives a string not in L_3 because there are either too many a's, or b's, or c's, or too few c's, or too few a's.

We have enumerated all 5 cases, each of which results in a language that is not context-free by our definition of the PL for context-free languages.

Recall: The class of regular languages is closed under the operations of union, concatenation, the Kleene star, intersection, and complement.

The class of context-free languages is closed under regular operators, and we had an algorithm that we applied on grammars.

Recall: $L_3 = \{a^n b^n c^n\}$ is not context-free (we just proved it using the pumping lemma).

But, for example, $L_1 = \{a^n b^n c^k | n, k \ge 0\}$ is context-free. So is $L_2 = \{a^n b^k c^k | n, k \ge 0\}$.

It is the case, however, that $L_3 = L_1 \cap L_2$.

Theorem: The class of context-free languages is not closed under intersection.

What about the complement operation?

Theorem: The class of context-free languages is not closed under complement.

Proof: Find a context-free language whose complement is not context-free. As it happens, $\overline{L_3}$ is context-free, and L_3 is not context-free.

Another proof: Reduction. Recall: set operations.

$$L_1\cap L_2\xrightarrow{\text{DeMorgan's Laws}}\overline{\overline{L_1}\cup\overline{L_2}}$$

Let L_1 and L_2 be any pair of context-free languages. If the complement of a context-free language was always context-free, then $\overline{L_1}$, $\overline{L_2}$, $\overline{L_1} \cup \overline{L_2}$, and $\overline{\overline{L_1} \cup \overline{L_2}}$ would be context-free. (Context-free languages are closed under union.) But then, the intersection $L_1 \cap L_2$ would also always be a context-free language, but sometimes, it is not as we know from the previous proof.

This constitutes a "reduction" from the proof that context-free languages aren't closed under intersection to a proof that context-free languages aren't closed under complement. (Aside: this is not a real reduction. Real reductions are significantly more complicated and are used to solve algorithmic problems, not prove corollaries.)

"How to fail"

 $R = \{a^n b^k c^j | n, j, k \geq 0\}$ is regular.

But $R_1 = \{a^n b^k c^j | n, j, k \ge 0\}$ is not, as there is telescoping. We can use the pumping lemma with the property that there is an equal number of b's and c's. Call the P.L. constant α . and select the string $b^m c^m, m > \alpha$. We've already done this – make too many b's after pumping and then the language no longer satisfies the property.

What about $R_2 = \{a^{n+2}n^kc^k | n, k \ge 0\}$? This is not regular either. Using the P.L., take the same property of # b's = # c's, constant α , and select string $w = aab^mc^m$, $m > \alpha$. This string is obtained by setting n = 0. Now, we want to pump w. Where is the pumping window? It can be anywhere from aa to anywhere else. The issue is if we are made to pump a and a alone, as pumping this makes good strings.

And so, we need to find a good proof.

Let languages $A_1 = aab^*c^*$, and let $A_2 = \{aab^kc^k | k \ge 0\}$. Then, $A_2 = A_1 \cap R_3$.

Proof by P.L. that A_2 is not regular: straightforward property #b's = #c's

String: $aab^m c^m, m > \alpha$

Pumping must be in a's because A_2 has exactly two a's. And so, A_2 is not regular and therefore, R_3 must not be regular because the class of regular languages is closed under intersection and we know A_1 to be regular.

This is another "reduction."

Theorem: The intersection of a context-free language with a regular language is context-free. This should be learned, albeit without proof.

Turing machines

Turing machines look somewhat like finite automata, with a state box and a tape with a beginning. The difference is that the tape continues forever, and the head of the machine is a read/write/left/right head, while the head of a finite automaton was a read/right -only head. There are also symbols called "blanks", which take the place of a symbol and are present in the "tail end" of the string out to \aleph_0 .

We will continue with the actual definition of Turing machines tomorrow.