
Lecture 10

Ben Rosenberg

June 22, 2021

Recall: to prove that a language 𝐿 is not regular:
1. Recognize a property that must be satisfied by all elements of 𝐿
2. Assume that 𝐿 is regular, name the positive constant of the Pumping Lemma
3. Select an element 𝑤 ∈ 𝐿 that is long enough to pump
4. For every admissible pumping decomposition𝑤 = 𝑥𝑦𝑧
• Select 𝑖 such that 𝑥𝑦𝑖𝑧 violates the recognized property, which means that 𝑥𝑦𝑖𝑧 ∈ 𝐿

Consider Σ = {𝑎, 𝑏} and 𝑝 ≡ the set of palindromes over Σ. Then, the property is that the strings are
palindromic. Let 𝑛 > 0 be the constant of the P.L.
How to fail: select a long palindrome. The thing is, 𝑎𝑛+1 is a palindrome, and remains so when it is pumped
even though it is long enough to pump because |𝑎𝑛+1| > 𝑛.
Back to the solution: recall that we want some string for which we can do this:

Figure 1: Pumping

Select a string: 𝑤 = 𝑎𝑛𝑏𝑎𝑛. We have |𝑤| = 2𝑛 + 1 > 𝑛 and so 𝑤 must pump.

𝑎𝑛 |⏟
𝑛 line

𝑏𝑛 𝑎𝑛

Where is the pumping window? To the left of the 𝑛‐line.
We say that the P.W. is 𝑎𝑗 for some 𝑗 > 0.
Pumping up once gives𝑤1 with 𝑛 + 𝑗 𝑎’s; 𝑤1 = 𝑎𝑛+𝑗𝑛𝑎𝑛.

Since the (𝑛 + 1)st symbol from the right is 𝑏 and the (𝑛 + 1)st symbol from the left is 𝑎, 𝑤1 cannot be a
palindrome.

(Note that the pumping window cannot be of zero length by definition.)

Another example: Suppose that we have the set of strings 𝐿𝑆 = {𝑎𝑛|𝑛 = 𝑘2, 𝑘 ∈ ℕ}.
So, 𝐿𝑆 = {𝜆, 𝑎, 𝑎𝑎𝑎𝑎, 𝑎9, 𝑎16, 𝑎25, … }.
We want to prove that 𝐿𝑆 is not regular. The property that we will use is that the number of 𝑎’s is a square
of a natural number.

Assume for the sake of contradiction that𝐿𝑆 is regular. Let 𝛼 > 0 be the constant of the P.L. Select a string
𝑤 = 𝑎𝑛2

where 𝑛 > 𝛼.

1

Ben Rosenberg CSCI 320: Theory of Computation June 22, 2021

Wherever the pumping window is, it is equal to 𝑎𝑗 for some 𝑗 such that 1 ≤ 𝑗 ≤ 𝛼 (in accordance with the
constraints provided by the pumping lemma).

Puump 𝑤 up once, and obtain 𝑤1 = 𝑎𝑛2+𝑗. We need to prove that 𝑛2 + 𝑗 is not a square of a natural
number.

We know that 𝑛2 < 𝑛2 + 𝑗 < 𝑛2 + 𝛼 by the constraints on 𝑗. This in turn is strictly less than 𝑛2 < 𝑛
because of our choice of 𝑛 as greater than 𝛼. Then, this is strictly less than 𝑛2 + 2𝑛 + 1 by arithmetic. Since
this is (𝑛 + 1)2, we have 𝑛2 < |𝑤1| < (𝑛 + 1)2. And so, if |𝑤1 is a square, then it cannot be the square of
some natural number.

The length of a string in a regular language has the form 𝛼𝑛 = 𝛽, for 𝑛 ≥ 0 and constants 𝛼 and 𝛽. This
comes from the Kleene star.

The difference between a regular language and, say, the language defined above as 𝐿𝑆 , is in the difference
between any two consecutive possible lengths. Between 𝑛2 and (𝑛 + 1)2 in 𝐿𝑆 , we have a difference of2𝑛 + 1 which grows unboundedly. Any such function besides linear functions will grow unboundedly as the
difference between points becomes unbounded. We should know that a language is not regular when its size
does not honor this pattern.

Pumping lemma for context‐free languages
Regular languages pump because the automata that represent it are finite, and have only so many states.
Eventually, a state will be repeated.

Similarly, a context‐free language will pump because its grammar has only so many variables; waiting long
enough will lead to a variable being repeated in the derivation.

Theorem:

Let 𝐿 be a context‐free language. Then:
(∃𝑘 > 0)(∀𝑤 ∈ 𝐿)(|𝑤| > 𝑘 ⟹ ((∃𝑥, 𝑦1, 𝑡, 𝑦2, 𝑧 ∈ Σ∗)(𝑤 = 𝑥𝑦1𝑡𝑦2𝑧 ∧ |𝑦1𝑡𝑦2 ≤ 𝑘 ∧ |𝑦1𝑦2| >
0 ∧ ((∀𝑖 ≥ 0)(𝑥𝑦𝑖

1𝑡𝑦𝑖
2𝑧 ∈ 𝐿)))))

In effect, the pumping window is split in general, and the two pieces pump in sync. (This comes from tele‐
scoping.)

Example: 𝐿3{𝑎𝑛𝑏𝑛𝑐𝑛|𝑛 ≥ 0}. Intuitively, this cannot be telescoping because there are three variables and
not two – the “parentheses are unmatched.”

Proof that 𝐿3 is not context‐free: Assume that it is. The property is that the number of 𝑎’s is equal to the
number of 𝑏’s and the number of 𝑐’s.
Let 𝑘 > 0 be the constant of the P.L. Select𝑤 = 𝑎𝑛𝑏𝑛𝑐𝑛 for some 𝑛 > 𝑘. Where is the pumping window?

𝑎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

𝑏𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

𝑐𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

Figure 2: Enumeration of possible positions of the pumping window

Queens College 2 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 22, 2021

By our own choice, we cannot pump up 𝑎’s, 𝑏’s, and 𝑐’s at the same time because the pumpingwindow cannot
exceed a length of 𝑘 and 𝑛 > 𝑘.
Pumping up once gives a string not in 𝐿3 because there are either too many 𝑎’s, or 𝑏’s, or 𝑐’s, or too few 𝑐’s,
or too few 𝑎’s.
We have enumerated all 5 cases, each of which results in a language that is not context‐free by our definition
of the PL for context‐free languages.

Recall: The class of regular languages is closed under the operations of union, concatenation, the Kleene star,
intersection, and complement.

The class of context‐free languages is closed under regular operators, andwe had an algorithm thatwe applied
on grammars.

Recall: 𝐿3 = {𝑎𝑛𝑏𝑛𝑐𝑛} is not context‐free (we just proved it using the pumping lemma).
But, for example, 𝐿1 = {𝑎𝑛𝑏𝑛𝑐𝑘|𝑛, 𝑘 ≥ 0} is context‐free. So is 𝐿2 = {𝑎𝑛𝑏𝑘𝑐𝑘|𝑛, 𝑘 ≥ 0}.
It is the case, however, that 𝐿3 = 𝐿1 ∩ 𝐿2.

Theorem: The class of context‐free languages is not closed under intersection.

What about the complement operation?

Theorem: The class of context‐free languages is not closed under complement.

Proof: Find a context‐free language whose complement is not context‐free. As it happens,𝐿3 is context‐free,
and 𝐿3 is not context‐free.

Another proof: Reduction. Recall: set operations.

𝐿1 ∩ 𝐿2
DeMorgan’s Laws
−−−−−−−−→ 𝐿1 ∪ 𝐿2

Let 𝐿1 and 𝐿2 be any pair of context‐free languages. If the complement of a context‐free language was
always context‐free, then 𝐿1, 𝐿2, 𝐿1 ∪ 𝐿2, and 𝐿1 ∪ 𝐿2 would be context‐free. (Context‐free languages
are closed under union.) But then, the intersection 𝐿1 ∩ 𝐿2 would also always be a context‐free language,
but sometimes, it is not as we know from the previous proof.

This constitutes a “reduction” from the proof that context‐free languages aren’t closed under intersection
to a proof that context‐free languages aren’t closed under complement. (Aside: this is not a real reduction.
Real reductions are significantly more complicated and are used to solve algorithmic problems, not prove
corollaries.)

“How to fail”

𝑅 = {𝑎𝑛𝑏𝑘𝑐𝑗|𝑛, 𝑗, 𝑘 ≥ 0} is regular.
But 𝑅1 = {𝑎𝑛𝑏𝑘𝑐𝑗|𝑛, 𝑗, 𝑘 ≥ 0} is not, as there is telescoping. We can use the pumping lemma with
the property that there is an equal number of 𝑏’s and 𝑐’s. Call the P.L. constant 𝛼. and select the string
𝑏𝑚𝑐𝑚, 𝑚 > 𝛼. We’ve already done this – make too many 𝑏’s after pumping and then the language no
longer satisfies the property.

What about𝑅2 = {𝑎𝑛+2𝑛𝑘𝑐𝑘|𝑛, 𝑘 ≥ 0}? This is not regular either. Using the P.L., take the same property
of # 𝑏’s = # 𝑐’s, constant𝛼, and select string𝑤 = 𝑎𝑎𝑏𝑚𝑐𝑚,𝑚 > 𝛼. This string is obtained by setting 𝑛 = 0.
Now, we want to pump 𝑤. Where is the pumping window? It can be anywhere from 𝑎𝑎 to anywhere else.
The issue is if we are made to pump 𝑎 and 𝑎 alone, as pumping this makes good strings.
And so, we need to find a good proof.

Queens College 3 Professor Bojana Obrenić

Ben Rosenberg CSCI 320: Theory of Computation June 22, 2021

Let languages𝐴1 = 𝑎𝑎𝑏∗𝑐∗, and let𝐴2 = {𝑎𝑎𝑏𝑘𝑐𝑘|𝑘 ≥ 0}. Then,𝐴2 = 𝐴1 ∩ 𝑅3.

Proof by P.L. that𝐴2 is not regular: straightforward property #𝑏’s = #𝑐’s
String: 𝑎𝑎𝑏𝑚𝑐𝑚, 𝑚 > 𝛼
Pumping must be in 𝑎’s because𝐴2 has exactly two 𝑎’s. And so,𝐴2 is not regular and therefore,𝑅3 must not
be regular because the class of regular languages is closed under intersection and we know𝐴1 to be regular.

This is another “reduction.”

Theorem: The intersection of a context‐free language with a regular language is context‐free. This should be
learned, albeit without proof.

Turing machines
Turing machines look somewhat like finite automata, with a state box and a tape with a beginning. The
difference is that the tape continues forever, and the head of the machine is a read/write/left/right head,
while the head of a finite automaton was a read/right ‐only head. There are also symbols called “blanks”,
which take the place of a symbol and are present in the “tail end” of the string out to ℵ0.

We will continue with the actual definition of Turing machines tomorrow.

Queens College 4 Professor Bojana Obrenić

	Pumping lemma for context-free languages
	“How to fail”

	Turing machines

